Course	Course Name	L-T-P -	Year of			
code.		Credits	Introduction			
ME373	Human Relations Management	3-0-0-3	2016			
Prerequisite: Nil						

Course Objectives

- To impart basic idea about human behavior as an individual and relations in group levels.
- To give idea on management of human relations in organizations and collective bargaining.
- To create knowledge on management of employer-employee relations and human conflicts.

Syllabus

Human behaviour as individual, Human behaviour in group, Management of human relations in organisations, Management of human relations and collective bargaining, Managing employeremployee relations, Managing human conflicts, Managing global human relations. Employee safety and health.

Expected outcome

The students will

- i. get basic idea about human behavior in individual and group levels.
- ii. understand the human relations in organizations and collective bargaining.
- iii. be able to manage employer-employee relations and conflicts.

Text Books:

- **1.** Gary Dessler, Human Resource Management., Pearson Education, 2017
- 2. Seema Sanghi , Stephen P. Robbins, , Timoti A Judge : Organizational Behaviour, Pearson Education, 2009

References:

- 1. Aubrey. C. Sanford, Human Relations: Theory and Practice, Merrill, 1973
- 2. C S Venkata Ratnam and B K Srivastava, Personnel Management and Human Resources, TMH, 1996.
- **3.** William Scott, R C Clothier and W Spiegel : Personnel Management Principles: Practices and Points of Views, Tata Mc Graw Hill, 1977.
- 4. Uma Sekharan, Organizational Behaviour-Text and Cases , Tata Mc Graw Hill, 1989.
- 5. V. Kumar, Customer Relationship Management, Wiley India Edition, 2013.

Course Plan				
Module	Estd.	Hours	End Sem. Exam Marks	
I	Human Behaviour : Biological characteristics, age, gender, tenure. Ability, intellectual and physical abilities. Learning, theories of learning. Values, importance of values, types. Attitudes, types, attitudes and consistency, workforce diversity. Personality and emotions, personality determinants and traits, emotion dimensions. Perception, factors influencing perception, making judgement about others, link between perception and individual decision making.	6	15%	
п	Human Behaviour and Relations in Groups : Defining and classifying different groups. Stages of group development, Five stage model. Group structure, roles, norms, status and size. Group decision making, group versus the individual. Types of teams, self-managed work teams, problem solving teams. Creating effective teams, composition, work design, process and team players.	6	15%	
FIRST INTERNAL EXAMINATION				

			,		
ш	Management of Human Relations in Organisations : Ethics and fair treatment at work, ethics and the law, ethics fair treatment and justice. Ethical behaviour at work, individual factors, organizational factors, the boss's influence, ethics policies and codes, the organization's culture, role of HR in fostering ethics and fair treatment. Disciplining an employee, formal disciplinary appeals process, discipline without punishment, employee privacy.	7	15%		
IV	Management of Human Laws and Collective Bargaining: Employment law, gross misconduct, personal supervisory liability, layoffs and the plant closing law. Collective bargaining, good faith, negotiating team, bargaining items, bargaining stages, bargaining hints, impasses, mediation, and strikes, the contract agreement. Grievances, sources of grievances, the grievance procedure, guidelines for handling grievances.	7	15%		
	SECOND INTERNAL EXAMINATION				
	Management of Training and Employer-Employee Relations:				
V	Training and development, objectives, strategies, methods and techniques. Design and organisation of training and evaluation of training. Employee relations, management-employee relations, managing discipline, grievance and stress, counselling, are handling problem employees. Industrial relations implications of personnel policies, nature of employment relationship.	8	20%		
VI	Management of Human Conflicts, Customer Relations, Unions and Global Relations: Industrial and organisational conflict, managing for good industrial relations and managing the moment of conflict. Customer relationship management, what if customer is the problem. Place of unions in organizations. The future scenario, the changing personnel management scenario. Managing global human relations. HRD the development role of personnel to the force. Employee safety and health.	8	20%		
	END SEMESTER EXAM				

510

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3x10 marks = 30 marks) Part C

There should be 3 questions each from module V and VI

Each question carries 10 marks

Students will have to answer any four questions out of 6 (4x10 marks = 40 marks) Note: Each question can have a maximum of four sub questions, if needed

Note: Each question can have a maximum of four sub questions, if needed.

Time: 3 hrs.

code	Course NameL-T-P-Credits		ar of duction
ME371	Nuclear Engineering3-0-0-3	2	016
	Prerequisite : Nil		
Course (Objectives:		
•	To explore the engineering design of nuclear power plants using the of reactor physics, thermodynamics, fluid flow and heat transfer.	basic prin	nciples
•	To provide an overview on reactor principles, nuclear safety, and rea	actor dyne	amic
-	behaviour.		
•	To understand the standards of radiation protection and need for nuc disposal	lear wast	e
Syllabus	UNIVERDITI		
	of Elementary nuclear physics, Nuclear fission, Boiling water r Nuclear fuels, Reactor heat removal, Safety and disposal	eactor, S	structural
Expected	Outcome:		
The stude	nts will be able to		
2. ur	nderstand the theories and principles of nuclear power generation inderstand the heat removal techniques applied to reactor heat transfer	systems.	
3. ac	equire knowledge about safe disposal of nuclear wastes		
Text book	xs/ Reference books		
1. S.	Glasstone and A. Sesonske, Nuclear Reactor Engineering, D. Van No	ostrand C	ompany,
		ostrand C	ompany,
IN	Glasstone and A. Sesonske, Nuclear Reactor Engineering, D. Van No	ostrand C	ompany,
IN	Glasstone and A. Sesonske, <i>Nuclear Reactor Engineering</i> , D. Van No C. 1967.	ostrand C	ompany,
IN	Glasstone and A. Sesonske, <i>Nuclear Reactor Engineering</i> , D. Van No C. 1967. Glasstone, Source book on atomic energy, Krieger Pub Co., 1979	ostrand C	
IN	Glasstone and A. Sesonske, <i>Nuclear Reactor Engineering</i> , D. Van No C. 1967. Glasstone, Source book on atomic energy, Krieger Pub Co., 1979	ostrand C Hours	ompany, End Sem. Exam. Marks
IN 2. S (Glasstone and A. Sesonske, <i>Nuclear Reactor Engineering</i> , D. Van No C. 1967. Glasstone, Source book on atomic energy, Krieger Pub Co., 1979 Course Plan	/	End Sem. Exam.
IN 2. S (Module	Glasstone and A. Sesonske, <i>Nuclear Reactor Engineering</i> , D. Van No C. 1967. Glasstone, Source book on atomic energy, Krieger Pub Co., 1979 Course Plan Contents Review of Elementary nuclear physics: Atomic structure – nuclear energy and nuclear forces – Nuclear fission. Nuclear reactions and radiations – Principles of radioactive decay interactions of an ray with matter – Neutron cross sections and reactions –The fission	Hours	End Sem. Exam. Marks

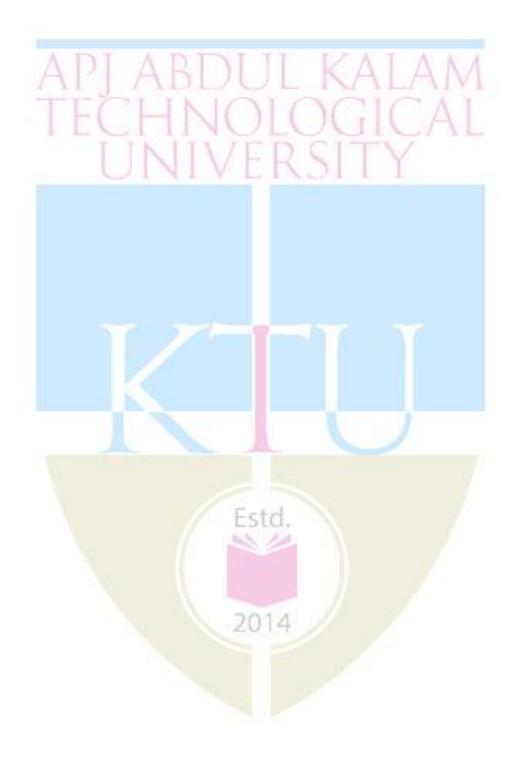
III	Boiling water reactor . Description of reactor system – Main components –Control and safety features .Materials of reactor construction – Fuel , moderator , coolant	7	15%
IV	Structural materials – Cladding –Radiation damage, Nuclear fuels : Metallurgy of Uranium – General principles of solvent extraction – Reprocessing of irradiated fuel – Separation process fuel enrichment .	7	15%
	SECOND INTERNAL EXAMINATION		
V	Reactor heat removal / equations of heat transfer as applied to reactor cooling– Reactor heat transfer systems – Heat removed in fast reactors. Radiation safety : Reactor shielding – Radiation dozes – Standards of radiation protection	7	20%
V1	Safety and disposal: Nuclear plant safety-safety systems-changes and consequences of accident-criteria for safety-nuclear waste- types of waste and its disposal-radiation hazards and their prevention-weapons proliferation	7	20%
END SEMESTER EXAMINATION			

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A


There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Co	ourse code	Course Name	L-T-P- Credits	Year of Introduction
	ME369	Tribology	3-0-0-3	2016
	·	Prerequisite : Nil	÷	• • • • • • • • • • • • • • • • • • • •
Syllabu Like Fr	 significance To understand the and the effect of To learn about convert problems To learn about the hydrodynamic at lubrications in m To understand the knowledge about To understand the surface character 	d based understanding of the subject ne genesis of friction, the theories/la viscosity onsequences of wear, wear mechani ne principles of lubrication, lubrication nd the advanced lubrication techniq	aws of sliding and r isms, wear theories ion regimes, theori ues and the applica in different applica heir topography and n Industry, Tribolo cation techniques a	olling friction and analysis of es of ation of ations and to get l learn about gical Parameters and applications,
Surface	es, surface modifi	ication techniques- Adhesion pr of Bearings, Comparison of Sliding	operties, Adhesio	n in Magnetic
Expect	ted Outc <mark>ome</mark>			
The stu	udents w <mark>ill be able</mark>	to		
		ject 'tribology' and its technologica		
	•	theories/laws of sliding and rolling t		•
iii.		onsequences of wear, wear mechani	isms, wear theories	and analysis of
	wear problems	theories of hydrodynamic and the a	duanand lubricatio	n taabniquaa
iv.	-	theories of hydrodynamic and the a of lubrications in metal working.	invaliced indificatio	n techniques
v.		dhesion property in different application	ations and to get ki	nowledge about
	different bearing m			8
vi.	Get basic idea abou	it the nature of engineering surfaces	, their topography	and learn about
	surface characteriza	ation techniques.		
Text b	ooks			
	Ernest Rabinowicz,	Friction and Waar of Materials Io	hn Wiley & sons,1	995
2.	Heinemann,1992	ibology: Friction and Wear of Engir	neering Materials,	Butterworth-

Reference books

- 1. B. Bhushan, Introduction to Tribology, John Wiley & Sons, Inc, New York, 2002
- 2. B.Bhushan, B.K. Gupta, Handbook of tribology: materials, coatings and surface treatments", McGraw-Hill,1997
- 3. Halling J, "Principles of Tribology", McMillan Press Ltd., 1978

	A D A R Course Plan A A	NA		
Module	TECH Contents	Hours	End Sem. Exam. Marks	
	Introduction to Tribology- Tribology in Design, Tribology in Industry, Economic Aspects of Tribology	1		
	Tribological Parameters Like Friction, Wear and Lubrication	1		
Ι	The Topography of Engineering Surface, Contact Between Surfaces.	2	15%	
	Types of Bearings, Comparison of Sliding and Rolling Contact Bearings.	2		
	Introduction, Empirical Laws of Friction, Kinds of Friction	1		
	Causes of Friction, Theories of Friction	1		
П	Measurement of Friction	1 2	150/	
11	Friction of Metals, Ceramic Materials, Polymers. Rolling Friction- Laws of Rolling Friction, Relation Between		15%	
	Temperature and Friction	1		
	Stick-Slip, Prevention of Stick-Slip, Consequences of Friction.	1		
	FIRST INTERNAL EXAMINATION			
	Types of Wear, Various Factors Affecting Wear	1		
	Theories of Wear, Wear Mechanisms	2		
	Measurement of Wear.	1		
III	Wear Regime Maps, Alternative Form of Wear Equations	1	15%	
	Lubricated and Unlubricated Wear of Metals, Materials Used in Different Wear Situations.	2		
	Fundamentals of Viscosity And Viscous Flow	1		
IV	Principle and Application of; Hydrodynamic Lubrication, Elastrodynamic Lubrication, Boundary and Solid Lubrication	2	15%	
T V	Types of Lubricants, Properties of Lubricants	1		
	Effect of Speed and Load on Lubrication, Frictional Polymers.	1		
	Lubrication in Metal Working: Rolling, Forging, Drawing and Extrusion.	2		
	SECOND INTERNAL EXAMINATION			
V	Adhesion: Introduction, Adhesion Effect by Surface Tension,	2	20%	
	Purely Normal Contact and Compression Plus Shear	-		

	Adhesion in Magnetic Recording Systems	1		
	Dependence of Adhesion on Material and Geometric Properties.			
	Bearing Materials : Introduction, Rolling Bearing, Fluid Film Lubricated Bearing, Dry Bearing, Bearing Constructions.	3		
	Introduction To Surface Engineering, Concept and Scope of Surface Engineering.	4		
V1	Surface Modification – Transformation Hardening, Surface Melting, Thermo chemical Processes	3		
	Surface Coating – Plating and Anoding Processes, Fusion Processes, Vapor Phase Processes.	3	20%	
	Selection of Coating For Wear And Corrosion Resistance, Potential Properties and Parameters of Coating.	1		
END SEMESTER EXAMINATION				

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Time: 3 hrs

Course code	Course Name	T-P- redits		nr of luction			
ME367	Non-Destructive Testing 3-	0-0-3	20	16			
	Prerequisite : Nil						
• • • • • • • • • • • • • •	To introduce the basic principles, techniques, equipment, app NDT methods such as Visual, Penetrant Testing, Magnetic Testing, Radiography, Eddy Current. To enable selection of appropriate NDT methods. To identify advantages and limitations of nondestructive testi To make aware the developments and future trends in NDT. on to NDT- Visual Inspection- Liquid Penetrant Insp - Ultrasonic Testing- Radiography Testing- Eddy Current Tes outcome e students will be able to differentiate various defect types and thods for the specimen.	Particle ng meth ection- sting. select th	e Testing, ¹ hods Magnetic he appropri	Ultrasonic			
2.	Hull B. and V.John, Non-Destructive Testing, Macmillan, 198 Krautkramer, Josef and Hebert Krautkramer, Ultrasonic Tes Verlag, 1990		Materials,	Springer-			
	Course Plan	1	1	БТ			
Module	Contents		Hours	End Sem. Exam Marks			
	Introduction to NDT, Comparison between destructive and	d NDT,	1				
I	Importance of NDT, Scope of NDT, difficulties of NDT, progress in NDT, economics aspects of NDT.	, future	1	15%			
1	Visual Inspection - tools, applications and limitat		1	13 /0			
	Fundamentals of visual testing: vision, lighting, material att environmental factors.	ributes,	1				
	visual perception, direct and indirect methods mirrors, mag	nifiers.	1				
	boroscopes, fibroscopes, closed circuit television, light sour		1				
	special lighting, a systems, computer enhanced system	1.0	1				
	Liquid Penetrant Inspection: principles, properties require good penetrants and developers - Types of penetrant developers						
п	and advantages and limitations of various methods of LP technique/ test procedure		1	15%			
	interpretation and evaluation of penetrant test indication indication	s, false	1 1				

	and safety precaution required in LPI, applications, advantages and limitations	1	
	FIRST INTERNAL EXAMINATION		
	Magnetic Particle Inspection (MPI)- Principles of MPI, basic	1	
	physics of magnetism, permeability, flux density, cohesive force,	1	
	magnetizing force, rentivity, residual magnetism	1	
	Methods of magnetization, magnetization techniques such as head	$\sqrt{1}$	
III	shot technique, cold shot technique, central conductor testing, magnetization using products using yokes	1	15%
	direct and indirect method of magnetization, continuous testing of	1	20,0
	MPI, residual technique of MPI, system sensitivity, checking devices in MPI	1	
	Interpretation of MPI, indications, advantage and limitation of MPI.	1	
	Ultrasonic Testing (UT): principle, types of waves, frequency,	1	
IV	velocity, wavelength, reflection, divergence, attenuation, mode conversion in ultrasonic UT testing methods	1	15%
1 V	contact testing and immersion testing, normal beam and straight	1	13 /0
	beam testing, angle beam testing, dual crystal probe, ultrasonic testing techniques	1	
	resonance testing, through transmission technique, pulse echo	1	
	testing technique, instruments used UT, accessories such as transducers, types, frequencies, and sizes commonly used	1	
	Reference blocks with artificially created defects, calibration of		
	equipment, Applications, advantages, limitations, A, B and C scan - Time of Flight Diffraction (TOFD).	1	
	SECOND INTERNAL EXAMINATION		
	Radiography Testing (RT): Principle, electromagnetic radiation	1	
	sources: X-ray source, production of X-rays, high energy X-ray source, gamma ray source - Properties of X-rays and gamma rays	1	20%
	Inspection techniques like SWSI, DWSI, DWDI, panoramic	1	2070
V	exposure, real time radiography, films used in industrial radiography, types of film, speed of films, qualities of film	1	
	screens used in radiography, quality of a good radiograph, film	1	
	processing, interpretation, evaluation of test results, safety aspects required in radiography	1	
	applications, advantages and limitations of RT	1	
	Eddy Current Testing (ECT) - Principle, physics aspects of ECT	1	
	like conductivity, permeability, resistivity, inductance, inductive	1	
T 74	reactance, impedance		
V1	Field factor and lift of effect, edge effect, end effect, impedance	1	20%
	plane diagram in brief, depth of penetration of ECT, relation between frequency and depth of penetration in ECT	1	
	equipments and accessories, various application of ECT such as	1	

conductivity measurement, hardness measurement, defect detection	1
coating thickness measurement, advantages and limitations of eddy current testing	1

END SEMESTER UNIVERSITY EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part B

There should be 2 questions each from module III and IV

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part C

There should be 3 questions each from module V and VI Each question carries 10 marks

Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME365	Advanced Metal Casting	3-0-0-3	2016
Prerequisite : Nil			

Course Objectives

- To gain theoretical and practical knowledge in material casting processes
- To develops an understanding of the dependent and independent variables which control materials casting in a production processes.
- To impart knowledge on design of gating system for castings
- To know foundry practice of ferrous and non ferrous alloys

Syllabus

Functional requirements of molding materials, gating - type of gating- gating design- factor involved in gating design, risers – primary function of a riser-theoretical consideration-riser design and placement, solidification, heat transfer during solidification, heat flow in solidification, ferrous and non-ferrous foundry practice, steel casting, aluminum and its alloys, magnesium and its alloys, casting design, defects and testing.

Expected outcome:

• The students will have exposed to the different areas of foundry practices, gained idea about metal casting, scope and its applications.

Text Books/References

- 1. A.K.Chakrabarti, Casting Technology and Cast Alloys, Prentice –Hall Of India Ltd, 2005
- 2. Beely, Foundry Technology, Newnes-Butterworths, 1979
- 3. Gruzleski, The Treatment of Liquid Aluminum-Silicon Alloys, the American Foundrymen's Society Inc, USA, 1992
- 4. Heine, Loper and Rosenthal, Principle of Metal Casting, 2nd Edition, Tata Mc-Graw-Hill Publishing Company Limited, New Delhi, 1978
- 5. John Cambell, Casting, Butterworth-Heineman Ltd, Jordon Hill, Oxford, 1991
- 6. T.V.Rama Rao, Metal casting Principles and Practice, New Age International, 2010
- 7. Gruzleski, The Treatment of Liquid Aluminum-Silicon Alloys, the American Foundrymen's Society Inc, USA, 1992.

	Course Plan					
Module	Contents	Hours	End Sem. Exam. Marks			
I	Design of molds Functional requirements of molding materials, type of sands Properties of molding sand, sand testing techniques Effect of molding on sand properties,	2	15%			

	Bonding material	1	
	Mould surface coating	1	
	Sand design and control	1	
	Thermal aspect of molding sand, mould wall movement	1	
	Pouring and feeding Gating - type of gating- gating design	1	
	Factor involved in gating design-illustrative problems in determination of filling time and discharge rate	1	
п	Aspiration effect- effects of friction and velocity distribution	M	
	Risers – primary function of a riser Theoretical consideration Riser design and placement Determination of dimensions of rise- blind risers	2	15%
	Internal risers-use of chills Use of insulators and exothermic compounds	1	
	FIRST INTERNAL EXAMINATION		
	Solidification		
	Freezing of pure metal Skin effects- nucleation and growth	1	
	Shrinkage- freezing of alloys	1	
III	Effect of mould materials and alloy composition on casting	1	15%
III	Fluidity- factor affecting fluidity- fluidity measurement and application of fluidity	1	1370
	Gases in metals- degassing	1	-
	Grain refinement	1	-
	Illustrative problems related to determination of solidification time	1	
	Heat transfer during solidification		
	Methods of manipulating heat transfer		
	Experimental methods for the study of heat transfer during solidification	1	
	Crystal growth methods	1	_
IV	Heat flow in solidification	1	15%
_ ,	Heat transfer with in the solid/liquid metal system	1	
	Heat transfer at the metal-mould interface	1	
	Heat flow in one dimensional solidification geometries	1	
	Freezing at mould wall	1	
	Rapid freezing in contact with a cold substrate with initial melt super cooling	1	
	SECOND INTERNAL EXAMINATION		
	Ferrous and non ferrous castings		
T 7	Steel Casting – The family of cast iron	1	6 00/
V	Melting of steels and cast irons–Grey iron Foundry practice – ductile iron – Malleable Iron casting	1	20%

	design		
	Aluminum and its alloys: Different Aluminum alloy systems Advantage and limitation of Aluminum alloy castings	1	
	Molding for aluminum castings - melting of Aluminum- degassing- grain refinement	1	
	Modification- effect of various melt treatment on the mechanical properties of Aluminum castings.	M	
	Magnesium and its alloys: different alloy systems- advantage and limitation of Magnesium alloy castings Molding for magnesium casting- melting of Magnesium- flux and flux less melting	4Ļ	
	Type and functions of fluxes used- degassing and grain refinement- pouring technique	1	
	Copper alloys: advantage of Copper alloys- melting- drossing-oxygen and hydrogen in Copper melting- control of gases- de oxidation	1	
	Casting defects and testing		
	Functional design- metallurgical design	1	
	simplification of foundry practice-economic considerations	1	
	design of junction- specification of castings	1	• • • • •
V1	inspection of castings- analysis of casting defects	1	20%
	nondestructive testing of casting- dye penetrant testing	1	
	magnetic flaw detection, radiography, ultrasonic testing, etc.	1	
	quality control and quality assurance	1	

END SEMESTER EXAM

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

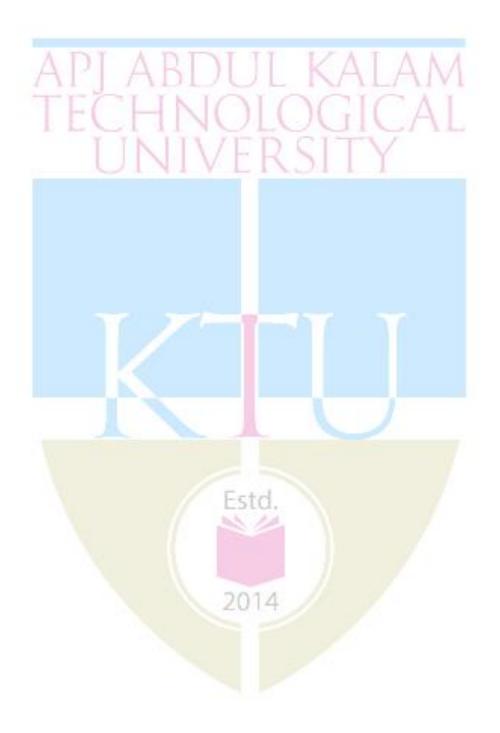
The question paper should consist of three parts Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part B

There should be 2 questions each from module III and IV


Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) **Part C**

There should be 3 questions each from module V and VI

Each question carries 10 marks

Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Cours code	Course Name	L-T-P- Credits	Year of Introduction
ME3	53 COMPOSITE MATERIALS AND MECHANICS	3-0-0-3	2016
Prerequ	site : Nil	AN	1
1. T 2. T c	Objectives: o understand various matrices and reinforcements used in composite o know about polymer matrix composites, metal matrix composites omposites and its manufacturing and applications o introduce post processing operations and micromechanics of comp	, ceramic n	natrix
Syllabı Compos		Metal mat	1
-	d outcome: The students will be able to gain knowledge about composites, reinfo	orcements,	matrices, post
2. F S 3. F Referent 1. F h 2. H 3. N 1 4. F	 K. Chawla, Composite Materials : Science and Engineering, Springeddy J N (Ed.), Mechanics of Composite Materials; Selected Works bringer, 1994 obert M. Jones, Mechanics of Composite Materials, CRC Press, 1998 ces Books: L.Matthews & R.D.Rawlings, Composite Materials, Engineering and and Book of Composites, George Lubin. Van Nostrand, Reinhold C Gicael hyer, Stress Analysis of Fiber - Reinforced Composite Materials, 98. K.Mallicak, Fiber-reinforced composites , Monal Deklar Inc., New onald Gibson, Principles of Composite Material Mechanics , TMH, 	of Nichola nd Sciences o. 1982 als , Tata M York, 1988	s J. Pagano, s, Chapman & cGraw Hill,
	Course Plan	1	
Modu le	Contents 2014	Hou	rs End Sem. Exam. Marks
	Composite : Introduction, definition, characteristics, functions	1	
	classification of composites based on structure and matrix	1	
Ι	smart composites, advantages and limitations	1	15%
	history, industrial scene and applications	1	
	Interfaces: wettability and bonding interface in composites	1	

	types of bonding at interface.	1	
	Fibers : Introduction, types of fibers, natural fibers	1	
	glass fiber fabrication, structure, properties and applications	2	
	boron fiber fabrication, structure, properties and applications	1	
II	carbon fiber, Ex-Pan carbon fiber	11	15%
11	Ex cellulose carbon fiber, Ex-Pitch carbon	<u> 1</u>	13 /0
	carbon fiber structure, properties and applications	1	
	aramid fiber fabrication, structure, properties and applications	1	
	whiskers: characteristics, properties and applications.	1	
	FIRST INTERNAL EXAMINATION		
	Polymer matrix composites (PMC) : thermoset, thermoplastic and elastomeric polymers	1	
	properties, characteristics and applications as matrix materials	1	
III	processing of polymer matrix composites: hand methods, Lay up method, spray up method	2	15%
	moulding methods, pressure bagging and bag moulding methods,	1	
	pultrusion and filament winding process.	1	
	Metal matrix composites (MMC) : classification of metals, intermetallics, alloys and their potential role as matrices in composites	1	
	properties, characteristics and applications of metals as matrix materials	1	
IV	production techniques: powder metallurgy, diffusion bonding, melt stirring	2	15%
	squeeze casting, liquid infiltration under pressure, spray code position, insitu process.	2	
	SECOND INTERNAL EXAMINATION		
	Ceramic matrix composites (CMC) : classification of ceramics and their potential role as matrices,	1	
	properties, characteristics and applications of ceramics as matrix materials	1	
V	conventional techniques : cold pressing and sintering, hot pressing, reaction bonding,	1	20%
	hot pressing and reaction bonding new techniques : liquid infiltration, pultrusion,	1	
	lanxide process, insitu chemical technique, sol-gel technique	2	

	Post processing operations : machining, cutting, polishing,	1	
	welding, rivetting and painting	1	
	Advanced post processing methods : ultrasonic welding, plasma coating,	1	
V1	Water jet cutting and laser machining	1	20%
	Micromechanics of composites: maximum stress and strain criterion (derivations)	2	
	Tsai-Hill and Tsai-Wu failure criterion (derivations)	2	
	mechanics of load transfer from matrix to fiber (description)	1	
	END SEMESTER EXAMINATION		

Estd.

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

	se code	Course Name	L-T-P- Credits	Year of Introduction
MI	E361	Advanced Fluid Mechanics	3-0-0-3	2016
Prereq	uisite : N	IE203 Mechanics of fluids		
Cours	•	ives: The main objectives of this course are to		
٠		vide knowledge regarding fluid-flow phenomen		
	-	ing systems, such as potential flow, vortex flow, bo		
•		rtake sustained learning in fluid mechanics to adv	ance their know	owledge in this
	field.	I FOLINOLOUI	L AI	- · · ·
•		nce the understanding of fluid mechanics, includinial form and turbulence.	ig the equation	ns of motion ir
Syllab	us			
Euleria	-	and Fundamentals, Stream function and Potenti the ches, Potential flow, Incompressible viscous flow		0 0
Expect	ted Outco	ome:		
		l be able to		
i.	-	the particular flow regime present in typical engine		
ii.		rate the concept of stream function, potential functi		
iii.		e the vorticity of a given velocity field and analy forced vortex and free vortex.	yze the vortici	ity in idealized
iv.		Torceu vortex and free vortex.		
1 · ·	Unoose	the appropriate fluid mechanics principles neede	ed to analyze	the fluid-flow
	situation	the appropriate fluid mechanics principles neede s.	ed to analyze	the fluid-flow
v.	situation		11	
v.	situation Recogniz	s.	11	
v. Text b	situation Recogniz design er	s. ze how fluid flow theory can be employed in a mo	11	
Text b	situation Recogniz design er ooks	s. ze how fluid flow theory can be employed in a monotonic and the second secon	odern mechani	cal engineering
Text b 1.	situation Recogniz design er ooks Bansal R	s. ze how fluid flow theory can be employed in a mo	odern mechani	cal engineering
Text b 1.	situation Recogniz design er ooks Bansal R Douglas	s. ze how fluid flow theory can be employed in a monotonic monotonic state of the second state of the seco	odern mechani es, Laxmi Publ	cal engineering
Text b 1. 2. 3.	situation Recogniz design er ooks Bansal R Douglas Kumar D Muralidh	s. ze how fluid flow theory can be employed in a monotronment. K., A Text Book of Fluid Mechanics and Machine J. F., Fluid Mechanics, Pearson Education, 2005. D. S., Fluid Mechanics and Fluid Power Engineering har K., G. Biswas, Advanced Engineering Fluid	odern mechani es, Laxmi Publ g, S. K. Kataria	cal engineering lications, 2010. a & Sons, 1987.
Text b 1. 2. 3. 4.	situation Recogniz design er ooks Bansal R Douglas Kumar D Muralidh Internatio	s. ze how fluid flow theory can be employed in a monotronment. K., A Text Book of Fluid Mechanics and Machine J. F., Fluid Mechanics, Pearson Education, 2005. O. S., Fluid Mechanics and Fluid Power Engineering har K., G. Biswas, Advanced Engineering Fluid conal limited, 2005.	odern mechani es, Laxmi Publ g, S. K. Kataria l Mechanics,	cal engineering lications, 2010. a & Sons, 1987. Alpha Science
Text b 1. 2. 3. 4. 5.	situation Recogniz design er ooks Bansal R Douglas Kumar D Muralidh Internatio Rama D.	s. ze how fluid flow theory can be employed in a monotrine wironment. K., A Text Book of Fluid Mechanics and Machine J. F., Fluid Mechanics, Pearson Education, 2005. D. S., Fluid Mechanics and Fluid Power Engineering har K., G. Biswas, Advanced Engineering Fluid onal limited, 2005. D., Fluid Mechanics and Machines, New Age Inter	odern mechani es, Laxmi Publ g, S. K. Kataria l Mechanics,	cal engineering lications, 2010. a & Sons, 1987. Alpha Science
Text b 1. 2. 3. 4. 5. Refere	situation Recogniz design er ooks Bansal R Douglas Kumar D Muralidh Internatio Rama D. nce book	s. ze how fluid flow theory can be employed in a monitorionment. K., A Text Book of Fluid Mechanics and Machine J. F., Fluid Mechanics, Pearson Education, 2005. O. S., Fluid Mechanics and Fluid Power Engineering har K., G. Biswas, Advanced Engineering Fluid onal limited, 2005. D., Fluid Mechanics and Machines, New Age Inter s	odern mechani es, Laxmi Publ g, S. K. Kataria I Mechanics, rnational, 2009	cal engineering lications, 2010. a & Sons, 1987. Alpha Science
Text b 1. 2. 3. 4. 5. Refere 1.	situation Recogniz design er ooks Bansal R Douglas Kumar D Muralidh Internatio Rama D. Schlichti	s. ze how fluid flow theory can be employed in a monotrine wironment. K., A Text Book of Fluid Mechanics and Machine J. F., Fluid Mechanics, Pearson Education, 2005. D. S., Fluid Mechanics and Fluid Power Engineering har K., G. Biswas, Advanced Engineering Fluid onal limited, 2005. D., Fluid Mechanics and Machines, New Age Inter s ng H., K. Gersten, Boundary Layer Theory, 8/e, Sp	odern mechani es, Laxmi Publ g, S. K. Kataria I Mechanics, rnational, 2009	cal engineering lications, 2010. a & Sons, 1987. Alpha Science
Text b 1. 2. 3. 4. 5. Refere 1. 2.	situation Recogniz design er ooks Bansal R Douglas Kumar D Muralidh Internatio Rama D. nce book Schlichti Shames I	s. ze how fluid flow theory can be employed in a monitorionment. K., A Text Book of Fluid Mechanics and Machine J. F., Fluid Mechanics, Pearson Education, 2005. D. S., Fluid Mechanics and Fluid Power Engineering har K., G. Biswas, Advanced Engineering Fluid onal limited, 2005. D., Fluid Mechanics and Machines, New Age Inter s ng H., K. Gersten, Boundary Layer Theory, 8/e, Sp I. H., Mechanics of Fluids, 4/e, McGraw-Hill, 2002.	odern mechani es, Laxmi Publ g, S. K. Kataria I Mechanics, rnational, 2009 pringer 2000.	cal engineering lications, 2010. a & Sons, 1987 Alpha Science
Text b 1. 2. 3. 4. 5. Refere 1.	situation Recogniz design er ooks Bansal R Douglas Kumar D Muralidh Internatio Rama D. nce book Schlichti Shames I	s. ze how fluid flow theory can be employed in a monitorionment. K., A Text Book of Fluid Mechanics and Machine J. F., Fluid Mechanics, Pearson Education, 2005. D. S., Fluid Mechanics and Fluid Power Engineering har K., G. Biswas, Advanced Engineering Fluid onal limited, 2005. D., Fluid Mechanics and Machines, New Age Inter s ng H., K. Gersten, Boundary Layer Theory, 8/e, Sp I. H., Mechanics of Fluids, 4/e, McGraw-Hill, 2002. V. L. and E. B. Wylie, Fluid Mechanics, McGraw-H	odern mechani es, Laxmi Publ g, S. K. Kataria I Mechanics, rnational, 2009 pringer 2000.	cal engineering lications, 2010. a & Sons, 1987. Alpha Science
Text b 1. 2. 3. 4. 5. Refere 1. 2.	situation Recogniz design er ooks Bansal R Douglas Kumar D Muralidh Internatio Rama D. nce book Schlichti Shames I	s. ze how fluid flow theory can be employed in a monitorionment. K., A Text Book of Fluid Mechanics and Machine J. F., Fluid Mechanics, Pearson Education, 2005. D. S., Fluid Mechanics and Fluid Power Engineering har K., G. Biswas, Advanced Engineering Fluid onal limited, 2005. D., Fluid Mechanics and Machines, New Age Inter s ng H., K. Gersten, Boundary Layer Theory, 8/e, Sp I. H., Mechanics of Fluids, 4/e, McGraw-Hill, 2002.	odern mechani es, Laxmi Publ g, S. K. Kataria I Mechanics, rnational, 2009 pringer 2000.	cal engineering lications, 2010. a & Sons, 1987. Alpha Science

I	Basic Concepts and Fundamentals: Fluid statics, Cartesian Tensors, Fluid Kinematics, and Description of fluid motion – Types of motion of fluid elements, Vorticity and circulation – Concept of rotational and irrotational flows. Equation of motion of forced and free vortex flow. Stream function and Potential function. Stream function and its relation with velocity field. Relation between stream function and stream lines - Relation between stream function and velocity potential for a 2-D irrotational and incompressible flow.	7 AM LAI	15%
п	Relation between stream lines and lines of constant potential. Sketching of stream lines. Lagrangian and Eulerian approaches, acceleration, temporal acceleration, convective acceleration. Reynolds transport theorem, derivation of continuity and momentum equations using Reynolds transport theorem. Problems on the application of momentum equation	6	15%
	FIRST INTERNAL EXAMINATION		
III	Potential flow: Uniform flow, source flow, sink flow, free vortex flow and super imposed flow-source and sink pair, doublet, plane source in a uniform flow(flow past a half body), source and sink pair in a uniform flow(flow past a Rankine oval body), doublet in a uniform flow(flow past a circular cylinder). Pressure distribution on the surface of the cylinder. Flow past a cylinder with circulation, Kutta- Juokowsky's law. Complex flow potential, complex flow potentials for source, sink, vortex and doublet. Potential flow between two parallel plates, potential flow in a sector. Introduction to conformal transformation, conformal mapping.	7	15%
IV	Incompressible viscous flow. Concepts of laminar and turbulent flows . Stokes viscosity law. Navier Stoke's equation and significance (Derivation not necessary).Simplification of Havier stock equation for steady incompressible flows with negligible body forces. Parallel flow through straight channel and couette flow. Hagen - Poiseuille flow. Derivation of Hagen Poissuille equations for velocity and discharge through a pipe, derivation of friction factor for laminar flow, Couette flow for negative, zero and positive pressure gradients, flow in a rotating annulus, Viscometer based on rotating annulus.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Boundary layer theory, Boundary layer thickness, Displacement thickness, momentum thickness, Energy thickness and their calculation. Laminar Boundary Layers, Boundary layer equations; Boundary layer on a flat plate, Prandtl boundary layer equations, Blasius solution for flow over a flat plate, Von- Karman momentum integral	8	20%

	equations, Pohlhausen approximation solution of boundary layer for non-zero pressure gradient flow, favorable and adverse pressure gradients, Entry flow into a duct, flow separation and vortex shedding.		
V1	Turbulent Flow: Introduction to turbulent flow, Governing equations of turbulent flow, Turbulent boundary layer equation, Flat plate turbulent boundary layer, Fully developed Turbulent pipe flow for moderate Reynold's number, Prandtl mixing hypothesis, Turbulence modeling. Boundary layer control.	47V 1 A 1	20%
	END SEMESTER EXAMINATION		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

014

Course code	Course Name	L-T-P - Credits	Year of
			Introduction
**341	DESIGN PROJECT	0-1-2-2	2016
	Prerequisite : Nil		

Course Objectives

- To understand the engineering aspects of design with reference to simple products
- To foster innovation in design of products, processes or systems
- To develop design that add value to products and solve technical problems

Course Plan

Study :Take minimum three simple products, processes or techniques in the area of specialisation, study, analyse and present them. The analysis shall be focused on functionality, strength, material, manufacture/construction, quality, reliability, aesthetics, ergonomics, safety, maintenance, handling, sustainability, cost etc. whichever are applicable. Each student in the group has to present individually; choosing different products, processes or techniques.

Design: The project team shall identify an innovative product, process or technology and proceed with detailed design. At the end, the team has to document it properly and present and defend it. The design is expected to concentrate on functionality, design for strength is not expected.

Note : The one hour/week allotted for tutorial shall be used for discussions and presentations. The project team (not exceeding four) can be students from different branches, if the design problem is multidisciplinary.

Expected outcome.

The students will be able to

- i. Think innovatively on the development of components, products, processes or technologies in the engineering field
- ii. Analyse the problem requirements and arrive workable design solutions

Fetal

Reference:

Michael Luchs, Scott Swan, Abbie Griffin, 2015. Design Thinking. 405 pages, John Wiley & Sons, Inc

Evaluation

First evaluation (Immediately after first internal examination)20 marksSecond evaluation (Immediately after second internal examination)20 marksFinal evaluation (Last week of the semester)60 marks

Note: All the three evaluations are mandatory for course completion and for awarding the final grade.

Course code	Course Name	L-T-P - Credits	Year of Introduction
ME331	MANUFACTURING TECHNOLOGY LABORATORY – I	0-0-3-1	2016
Prerequisit	e: ME220 Manufacturing Technology	1	I
during r 2. To prac 3. To gair	bjectives: tice on machine tools and identify, manipulate and contro- nachining processes in manufacturing industry. trice arc and gas welding technologies. I knowledge on the structure, properties, treatment, testing on and Brass.	AI	
List of Exe	rcises/Experiments :		
side cu tool gr Study Study Uurning Machi Re-sha 1. Exercis knurling a	ne tool alignment of test on the lathe. arpening of turning tool to specific geometry ses on centre lathe:- Facing, plain turning, step turning nd chamfering - form turning and taper turning – eccent	and parting	ness obtainable - y fixed on lathe. wobbling during
2. Exercis	ead and internal thread etc. Sees on lathe: - Measurement of cutting forces in turning provident of the second and feed	process and	correlation of the
3. Measu	ughness obtainable by varying feed, speed and feed. rement of cutting temperature and tool life in turning he machine.	and machin	ne tool alignmen
4. Exercis	es on Drilling machine- drilling, boring, reaming, tappir	g and count	er sinking etc.
	ses on drilling machine: - Measurement of cutting for vith varying input parameters.	orces in dri	lling process and
	es on Shaping machine es on shaping machine: - flat surfaces, grooves and key w	/ays.	
	es on Slotting machine es on slotting machine: - flat surfaces, grooves and key w	ays.	
Exercises o 8. Exercise milling of	n Milling machine es on milling machine: - face milling, end milling – sp keyways etc. ses on milling machine: - Measurement of cutting fo	ur and helio	

correlate the surface roughness obtainable by varying input parameters. **10** Machine tool **alignment test** on milling machine

Planing and Broaching machine

11. Study and demonstration of broaching machine.

12. Exercises on planing machine

Exercises on Welding

13. Exercises on arc and gas welding: - butt welding and lap welding of M.S. sheets.

Exercises on Grinding machine

14. Exercise on surface grinding, cylindrical grinding and tool grinding etc.

15. Measurement of cutting forces and roughness in grinding process and correlate with varying input parameters.

Metallurgy

16. Specimen preparation, etching & microscopic study of Steel, Cast iron and Brass and Grain size measurement.

17. Heat treatment study:-Effect on mechanical properties and microstructure of Steel, Cast Iron and Brass.

18. Studies of various quenching mediums, **Carryout heat treatments on steel** based on ASM handbook vol.4 and observe the hardness obtained.

A minimum of 12 experiments are mandatory out of total 18 experiments but all the experiments mentioned in metallurgy are mandatory.

Besides to the skill development in performing the work, oral examination should be conducted during end semester examination.

The student's assessment, continuous evaluation, awarding of sessional marks, oral examination etc. should be carried out by the assistant professor or above.

Expected outcomes:

The students will be able to

- 1. Identify various process parameters and their influence on surface properties of various metals.
- 2. Recommend appropriate speed, feed and depth of cut for various processes on lathe machine.
- 3. Position, hold and locate work material and cutting tools in various basic machine tools.
- 4. Choose suitable welding process for different metals.
- 5. Choose appropriate heat treatment process for different metals

Text Books:

- 1. Acharkan. N., Machine Tool Design Vol. 1 to 4, MIR Publication, 2000.
- 2. HMT, Production Technology, Tata McGraw Hill, 2001
- 3. W. A. J. Chapman, Workshop Technology Part I, ELBS & Edward Arnold Publishers, 1956

-		L-T-P- Credita	Year of	otion
Prerequisite: N	COMPUTER PROGRAMMING & NUMERICAL	Credits 2-0-1-3	Introduce 2016	ction
Prerequisite: N	METHODS	2-0-1-5	2010	
		TA	N.A.	
Course Object		HA	M	
	o students with fundamentals of computer programming	1 - 1		
	de fundamental idea about the use of computer program	ming and nu	merical m	ethods for
-	ng the basic engineering problems.	ining and ne	interieur inv	
Syllabus	TINHVED CIT	V		
Introduction to	computer programming concept, control statements, basic	cs pointers,	Introduction	n to Class
	ors and approximations, curve fitting, Solution of Partial	-		
-	reparation of computer programs.		1	
Expected out				
-	ents will be able to write computer programs for num	erical soluti	ons for en	gineering
	ns like system of equations and heat equations		· · ·	5 0
Text Books				
	usamy, Computer Programming 1e McGraw Hill Educa	tion, 2013		
-	usamy, Numerical Methods 1e McGraw Hill Education,			
3. Jose S.	Computer Programming and Numerical Methods, Pent	agon, 2015.		
4. Ravicha	ndran D., Programming with C++, Tata McGraw Hill, 2	2007.		
Reference Boo	ks			
U	aswamy E., Object Oriented Progra <mark>m</mark> ming with C++, Ta		Hill, 1992	•
	ti N., Object Oriented Programming in C++, SAMS, 19			
	C. F. and P. O. Wheatley, Applied Numerical Analysis, I		4.	
	ne A. M., Object Oriented Programming with ANSI & T			
	S. B. and J. Lajoie, C++ Primer, Pearson Education, 20	005.		
Pearson	Education, 2009. Course Plan			
	Course Fian			Sem.
	Estd		TT	
Module	Contents		Hours	Exam
Intro	luction to Computer programming concept –internal repr	resentation o	f	Marks
	· Algorithm and flow chart, Basics of procedure oriente			
	ed programming. Introduction to C++: Structure of C			
Keyv	ords; Identifiers; Data types – integer, real, character, str			
I onum	eration, Constant and Variables; Operators – assignmen	it, arithmetic	, ,	15%
- enum	onal, logical, increment, decrement and conditiona	-		
relati	nents – simple & compound, declaration statements. Inp	ut and outpu	t	
relati				
relati				
relati State stream	rrol statements: if, if-else, switch, for, while,	do-while	[,]	
relati State streat Con	rol statements: if, if-else, switch, for, while, ak and continue statements, Arrays – one dimens	ional & two	o 7	15%
II Cintan relati State stream Dre dim	rol statements: if, if-else, switch, for, while,	ional & two	o 7	15%

III	Basics of Pointers. Function call by value, call by reference. Preparation of programs for evaluation of Factorial of a number, infinite series, Sorting, Searching and Matrix multiplication.	8	15%
IV	Introduction to Class and Object- definition, data members, member function. private & public member functions, member access, friend declaration, class objects, predefined classes, initialization. Inheritance- base class and derived class. Simple programs using the above features. (No programming questions for University examination and internals)	7	15%
	SECOND INTERNAL EXAM		
V	Errors and approximations, sources of errors. Solution of linear system of equations: Gauss elimination, Gauss-Jordan and Gauss-Seidel methods. Interpolation: Lagrange and Aitken techniques.		20%
VI	Curve fitting: method of least squares, non-linear relationships, Linear correlation, measures of correlation. Solution of Partial differential equations: classification, Laplace equation, Finite difference method. Numerical problems and preparation of computer programs for the above methods	8	20%

END SEMESTER EXAM

Question Paper Pattern

2014

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME303	MACHINE TOOLS AND DIGITAL MANUFACTURING	3-0-0-3	2016
Prerequisite	: Nil	T A A	

Course Objectives: The main objectives of this course are

1. To introduce students to the scientific principles underlying material behavior during manufacturing processes so as to enable them to undertake calculations of forces, tool stresses and material removal rates.

- 2. To understand various machine tools such as lathe, drilling machine, reciprocating machines etc. and their operations.
- 3. To impart knowledge of appropriate parameters to be used for various machining operations.
- 4. To develop knowledge on the importance of milling grinding and super finishing in metal cutting process.
- 5. To introduce the fundamentals of digital manufacturing.

Syllabus

Introduction to metal cutting, Mechanism of metal removal, Merchants theory, Frictional forces in metal cutting, Thermal aspects of machining, General purpose machine tools, Principle and operation of lathe, Drilling machines, Reciprocating machines, Milling machines, Grinding machines, Super finishing operations, Semi-automatic machine tools, Single and multi-spindle machines, Introduction to digital manufacturing and digital manufacturing science.

Expected outcomes:

The students will be able to

- 1. Analyze various machining process and calculate relevant quantities such us velocities, forces and powers.
- 2. Identify and explain the function of the basic components of a machine tool.
- 3. Understand the limitations of various machining process with regard to shape formation and surface texture.
- 4. Apply cutting mechanics to metal machining based on cutting force and power consumption.
- 5. Understand the use of various machine tools and their fields of application.
- 6. Understand the principle and applications of grinding and super finishing operations.

7. Get a basic knowledge on the importance of digital manufacturing.

Text books

- 1. Chapman W. A. J., Workshop Technology, Viva books (P) Ltd, 1988
- 2. HMT, Production Technology, Tata McGraw-Hill,2001
- 3. Zude Zhou, Shane (Shengquan) Xie and Dejun Chen, Fundamentals of Digital Manufacturing Science, Springer-Verlag London Limited, 2012

Reference books

1. Acharkan. N., Machine Tool Design Vol. 1 to 4, MIR Publication, 2000

A I

- 2. Chernov, Machine Tools, MIR Publication, 1984
- 3. Ghosh A. And Malic A. K., Manufacturing Science, East West Press, 2010
- 4. Hajra Choudary, Elements of workshop technology, Vol I & II, Media Publishers, 2010
- 5. Lihui Wang and Andrew Yeh Ching Nee, Collaborative Design and Planning for Digital Manufacturing, Springer-Verlag London Limited, 2009
- 6. Malkin Stephen, Grinding Technology: Theory and Applications of Machining with Abrasives, Industrial press, 2008
- 7. Poul De Garmo, J.T.Black, R.A.Kosher, Materials and Processes in Manufacturing, Prentice Hall of India Pvt. Ltd., 1997.

Course Plan

Module	Contents	Hours	End Sem. Exam. Marks
	Introduction to metal cutting: Tool nomenclature – Attributes of each tool nomenclature – Attributes of feed and tool nomenclature on surface roughness obtainable	1	
	Orthogonal and oblique cutting - Mechanism of metal removal – Primary and secondary deformation shear zones	1	
	Mechanism of chip formation – Types of chips, need and types of chip breakers – Merchant's theory	1	
Ι	Analysis of cutting forces in orthogonal cutting– Work done, power required (simple problems)	1	15%
	Friction forces in metal cutting – development of cutting tool materials	1	
	Thermal aspects of machining -Tool wear and wear mechanisms	1	
	Factors affecting tool life– Economics of machining (simple problems) Cutting fluids	1 1	
	General purpose machine tools – Principle and operation of lathe – Types of lathes and size specification	1	
	Work holding parts of lathes and their functions – Main operations	1	
	Taper turning and thread cutting – Attachments	1	
II	Feeding mechanisms, Apron mechanisms		15%
	Drilling Machines – Types – Work holding devices	1	
	Tool holding devices – Drill machine operations Drilling machine tools – Twist drill nomenclature- cutting forces	1	
	in drilling.	1	
	FIRST INTERNAL EXAMINATION		
III	Reciprocating machines: Shaping machines – Types – Size – Principal parts – Mechanism	1	15%
	Work holding devices – Operations performed – Tools	1	

	Cutting speed, feed and depth of cut – Machining time.	1	
	Slotting machines – Types – Size – Principal parts – Mechanism –		
	Work holding devices	1	
	Operations performed – Tools – Cutting speed, feed and depth of	1	
	cut	1	
	Planing machines – Types – Size – Principal parts – Mechanism – Work holding devices	1	
	Operations performed – Tools – Cutting speed, feed and depth of cut – Machining time- Surface roughness obtainable.	1	
	Milling machines – Types – Principal parts – Milling mechanism	1	
	Work holding devices – Milling machine attachments	1	
	Types of milling cutters – Elements of plain milling cutters	1	
IV	Nomenclature - Cutting forces in milling – Milling cutter materials	1	15%
1 V	Up milling, down milling and face milling operations	1	1370
	Calculation of machining time	1	
	Indexing – Simple indexing – Differential indexing	1	
	SECOND INTERNAL EXAMINATION	1	
	Grinding machines – Classification – Operations – Surface,		
	cylindrical and centreless grinding	1	
	Grinding mechanisms – Grinding wheels: Specification – types of		
	abrasives, grain size	1	
	Types of bond, grade, structure – Marking system of grinding		
	wheels – Selection of grinding wheels	1	
	Glazing and loading of wheels – Dressing and Truing of grinding		
	wheels, surface roughness obtainable	1	
\mathbf{V}	Superfinishing operations: Lapping operation– Types of hand		20%
	lapping – Lapping machines – Types of honing –Methods of	1	
	honing	1	
	Types of honing stones – Honing conditions – Cutting fluids –	7	
	Types of broaches – Force required for broaching – Surface	1	
	roughness obtainable in lapping, honing and broaching operations.		
	Semi-automatic machine tools – Turret and capstan lathes.	1	
	Automatic machine tools – Single and multi-spindle machines.	1	
	Introduction to Digital Manufacturing: Concepts and research and	1	
	development status of digital manufacturing	1	
	Definition of digital manufacturing – Features and development of	1	
	digital manufacturing.	1	
	Theory system of digital manufacturing science: Operation Mode	1	
V1	and Architecture of Digital Manufacturing System	1	200/
V I	Operation reference mode of digital manufacturing system –	1	20%
	Architecture of digital manufacturing system	1	
	Modeling theory and method of digital manufacturing science	1	
	Critical modeling theories and technologies of digital	1	
	manufacturing science		
	Theory system of digital manufacturing science – Basic	1	

architecture model of digital manufacturing system.	
END SEMESTER EXAM	

Time: 3 hrs

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: in all parts each question can have a maximum of four sub questions

2014

code	e Course Name L-T-P Credit		Year of Introduction
ME30	1 MECHANICS OF MACHINERY 3-1-0-4	4	2016
rerequisi	ite : Nil		
To provid	Objectives de knowledge on kinematics of selected mechanisms, design of of gears, gear trains and synthesis of mechanisms.	cams,	, theory and
Syllabus	or gouro, gour traine and synthesis or moonunismer		
accelerat cam prof	tion to kinematics and mechanisms - different mechanisms, displace ion analysis. Cam and followers - displacement, velocity, and ac file synthesis. Gears – law of gearing, interference, gear trains, appl s - dimensional synthesis, graphical synthesis, position synthesis, a ly.	ccelera	ttion analysis 1s. Kinematic
Expecte	d outcome .		
-	nts will be able to solve practical problems related to kinematics of	mecha	nisms
	aney P. L., Theory of Machines and Mechanisms, Khanna Publishers Rattan, Theory of Machines, Tata Mc Graw Hill,2009	,2005	
2. D. I Educ	Wilson, P. Sadler, Kinematics and Dynamics of Machinery, Pearson H. Myskza, Machines and Mechanisms Applied Kinematic cation,2013 rdman G. N. Sandor, Mechanism Design: Analysis and synthesis	Anal	ysis, Pearso
 D. I Educ G. E Hall Ghos 	H. Myskza, Machines and Mechanisms Applied Kinematic eation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesis of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated Ea Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGra	Anal Vol I st Wes	ysis, Pearso & II, Prentic st Press,1988
 D. I Educ G. E Hall Ghos 	H. Myskza, Machines and Mechanisms Applied Kinematic cation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesis of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated Ea	Anal Vol I st Wes	ysis, Pearso & II, Prentic st Press,1988 ,2010
 D. I Educ G. E Hall Ghos 	H. Myskza, Machines and Mechanisms Applied Kinematic eation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesis of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated Ea Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGra Course Plan Contents	Anal Vol I st Wes	ysis, Pearso & II, Prentic st Press,1988 ,2010 Sem.
 D. I Educ G. E Hall Ghos J. E. 	H. Myskza, Machines and Mechanisms Applied Kinematic eation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesis of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated Ea Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGra Course Plan Contents Introduction to kinematics and mechanisms - various mechanisms, kinematic diagrams, degree of freedom- Grashof's criterion, inversions, coupler curves	Anal Vol I st Wes w Hill	ysis, Pearso & II, Prentic st Press,1988 ,2010
 D. I Educ G. E Hall Ghos J. E. 	H. Myskza, Machines and Mechanisms Applied Kinematic eation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesis of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated Ea Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGra Course Plan Contents Introduction to kinematics and mechanisms - various mechanisms, kinematic diagrams, degree of freedom- Grashof's	Anal Vol I st Wes w Hill Hou	ysis, Pearso & II, Prentic st Press,1988 ,2010
 D. I Educ G. E Hall Ghos J. E. Module	H. Myskza, Machines and Mechanisms Applied Kinematic ration,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesis of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated Ea Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGra Course Plan Contents Introduction to kinematics and mechanisms - various mechanisms, kinematic diagrams, degree of freedom- Grashof's criterion, inversions, coupler curves straight line mechanisms exact, approximate – Ackerman Steering Mechanism - Hooke's joint - Geneva mechanism - mechanical advantage, transmission angle Displacement, velocity and acceleration analysis - relative motion - relative velocity - instant centre -Kennedy's theorem	Anal Vol I st Wes w Hill Hou 3	ysis, Pearso & II, Prentic st Press,1988 ,2010 urs Sem. Marks
2. D. I Educ 3. G. E Hall 4. Ghos 5. J. E. Module	H. Myskza, Machines and Mechanisms Applied Kinematic cation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesis of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated Ea Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGra Course Plan Contents Introduction to kinematics and mechanisms - various mechanisms, kinematic diagrams, degree of freedom- Grashof's criterion, inversions, coupler curves straight line mechanisms exact, approximate – Ackerman Steering Mechanism - Hooke's joint - Geneva mechanism - mechanical advantage, transmission angle Displacement, velocity and acceleration analysis - relative	Anal Vol I st Wes w Hill Hou 3 4	ysis, Pearso & II, Prentic st Press,1988 ,2010
 D. I Educ G. E Hall Ghos J. E. Module	H. Myskza, Machines and Mechanisms Applied Kinematic aation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesis of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated Ea Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGra Course Plan Contents Introduction to kinematics and mechanisms - various mechanisms, kinematic diagrams, degree of freedom- Grashof's criterion, inversions, coupler curves straight line mechanisms exact, approximate – Ackerman Steering Mechanism - Hooke's joint - Geneva mechanism - mechanical advantage, transmission angle Displacement, velocity and acceleration analysis - relative motion - relative velocity - instant centre -Kennedy's theorem Relative acceleration - Coriolis acceleration - graphical and analytical methods – complex number methods - computer	Anal Vol I st Wes w Hill Hou 3 4 4	ysis, Pearso & II, Prentic st Press,1988 ,2010 urs Sem. Exam Marks
2. D. I Educ 3. G. E Hall 4. Ghos 5. J. E. Module	H. Myskza, Machines and Mechanisms Applied Kinematic ation,2013 rdman, G. N. Sandor, Mechanism Design: Analysis and synthesis of India,1984. sh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated Ea Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGra Course Plan Course Plan Contents Introduction to kinematics and mechanisms - various mechanisms, kinematic diagrams, degree of freedom- Grashof's criterion, inversions, coupler curves straight line mechanisms exact, approximate – Ackerman Steering Mechanism - Hooke's joint - Geneva mechanism - mechanical advantage, transmission angle Displacement, velocity and acceleration analysis - relative motion - relative velocity - instant centre -Kennedy's theorem Relative acceleration - Coriolis acceleration - graphical and analytical methods – complex number methods - computer oriented methods. Cams - classification of cam and followers - displacement diagrams, velocity and acceleration analysis of SHM, uniform	Anal Vol I st Wes w Hill Hou 3 4 4 4	ysis, Pearso & II, Prentic st Press,1988 ,2010 Irs Sem. Marks 15%

	Analysis of tangent cam with roller follower and circular cam with flat follower	6	
	Introduction to polynomial cams.	2	
IV	Gears – terminology of spur gears – law of Gearing - involute spur gears involutometry - contact ratio - interference - backlash - gear standardization - interchangability	4	15%
	Non-standard gears, centre distance modification, long and short addendum system internal gears - theory and details of bevel, helical and worm gearing	4	
	SECOND INTERNAL EXAMINATION		
V	Gear trains - simple and compound gear trains - planetary gear trains – differential -solution of planetary gear train problems - applications	5	20%
v	Kinematic synthesis (planar mechanisms) - tasks of kinematic synthesis – type, number and dimensional synthesis – precision points	4	
	Graphical synthesis for motion - path and prescribed timing - function generator	3	20%
VI	2 position and 3 position synthesis – overlay Method	3	
V I	Analytical synthesis techniques, Freudenstein's equation – complex number methods - one case study in synthesis of mechanism.	4	
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Esta

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts **Part A** There should be 2 questions each from module I and II Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: in all parts each question can have a maximum of four sub questions

Course cod	e Course Name	L-T-P - Credit		Year of roduction
HS300	Principles of Management	3-0-0-3		2016
Prerequisit	e : Nil	I		
Course Obj				
• To d	evelop ability to critically analyse and	evaluate a variety of mana	agement pr	actices in
the c	ontemporary context;			
	nderstand and apply a variety of mana			
	e able to mirror existing practices or to		ative mana	igement
-	betencies, required for today's complex	0 1		
	e able to critically reflect on ethical the	eories and social responsit	oility ideolo	ogies to
	e sustainable organisations.			
Syllabus Definition	also and functions of a management		and ant n	
	roles and functions of a manager, matched to challenges and the concepts like,			
	Early contributors and their contrib			
	consibility. Planning, Organizing,			
	Decision making under certainty,			-
0	nvolved in decision making.	, , , , , , , , , , , , , , , , , , ,	r	
Expected	0			
A student	who has undergone this course would l	be able to		
i.	manage people and organisations			
ii.	critically analyse and evaluate man	C 1	tices	
iii.	plan and make decisions for organiz			
iv.	do staffing and related HRD function	ons		
Text Book				ning 10th
Edition.	ontz and Heinz Weihrich, <i>Essentia<mark>ls</mark> o</i>	<i>f Management</i> , McGraw F	iiii Compa	nies, 10th
Reference	N•			
	. Daft, <i>New era Management</i> , 11th E	dition Cengage Learning	. /	
	. Griffin, Management Principles an			e Learning
	. Heinz Weirich, Mark V Cannice an			-
	Innovative and Entrepreneurial Pe			
2	Peter F Drucker, The Practice of M	anagement, McGraw Hill,	New York	K
4	. Robbins and Coulter, Management	, 13th Edition, 2016, Pears	on Educati	ion
	Cou	rse Plan		
Module	Contents	4	Hours	Sem. Exam Marks
	ntroduction to Management: definitio	na managemial value and		
	unctions; Science or Art perspectives			
		eurial perspectives of		
	Anagement (3 Hrs.)– Managing peo	1 1	6	
	he context of New Era- Managing for		0	
	he Challenges of Management (3 Hrs.			15%

	Early Contributions and Ethics in Management: Scientific			
	Management- contributions of Taylor, Gilbreths, Human			
	Relations approach-contributions of Mayo, McGregor's			
II	Theory, Ouchi's Theory Z (3 Hrs.) Systems Approach, the			
	Contingency Approach, the Mckinsey 7-S Framework			
	Corporate Social responsibility- Managerial Ethics. (3 Hrs)			
			6	15%
	FIRST INTERNAL EXAMINATION	_		I
	ADI ARIDI II KALAM	A		
III	Planning: Nature and importance of planning, -types of plans	V.I		
	(3 Hrs.)- Steps in planning, Levels of planning - The Planning		6	15%
	Process. – MBO (3 Hrs.).		_	
	Organising for decision making: Nature of organizing,			
	organization levels and span of control in management			
	Organisational design and structure –departmentation, line and			
IV	staff concepts (3 Hrs.) Limitations of decision making-			
	Evaluation and selecting from alternatives- programmed and		6	15%
	non programmed decisions - decision under certainty,			
	uncertainty and risk-creative process and innovation (3 Hrs.)			
	SECOND INTERNAL EXAMINATION	4		T
	Staffing and related HRD Functions: definition,			
	Empowerment, staff – delegation, decentralization and			
	recentralisation of authority – Effective Organizing and			
\mathbf{V}	culture-responsive organizations –Global and entrepreneurial		0	2004
	organizing (3 Hrs.) Manager inventory chart-matching person		9	20%
	with the job-system approach to selection (3 Hrs.) Job design-			
	skills and personal characteristics needed in managers-			
	selection process, techniques and instruments (3 Hrs.)			
	Leading and Controlling: Leading Vs Managing – Trait approach and Contingency approaches to leadership -			
	Dimensions of Leadership (3 Hrs.) - Leadership Behavior and			
	styles – Transactional and Transformational Leadership (3			
VI	Hrs.) Basic control process- control as a feedback system –		9	20%
	Feed Forward Control – Requirements for effective control –		2	2070
	control techniques – Overall controls and preventive controls –			
	Global controlling (3 Hrs.)			
	END SEMESTER EXAM			
	END SEMESTER EXAM			

Max. marks: 100, Time: 3 hours. The question paper shall consist of three parts

Part A: 4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part B: 4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part C: 6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P-Credits	Year of Introduction
EE335	ELECTRICAL AND ELECTRONICS LAB	0-0-3-1	2016
Course Object	ives: The main objectives of this course are		
• T	o give a practical knowledge on the working of electrical	machines includi	ng dc machines,
ir	nduction motors and synchronous motors.	_AIVI	
• T	o impart the basics about design and implementation of s	mall electronic cir	cuits.
Syllabus	TECHNOLOUN	CAL	
List of experim	ients:	1	
-	a dc shunt generator, determination of critical resistance,	critical speed,	
	al resistance required in the field circuit		
	aracteristics of DC Shunt generator		
	tracteristics of DC Compound generator		
	t on DC Series motor		
	t on DC Shunt motor t on single phase transformer		
	of three phase squirrel cage induction motor by star delta	switch load test	
	phase squirrel cage induction motor	, switch, load test	
	t on three phase slip ring induction motor		
	t on single phase induction motor.		
	SC test on single phase transformer		
	racteristics of diodes and Zener diodes		
	d output characteristics of CE configuration of BJT S. De	etermination of β ,	
	istance and output resistance.	1 6	
on CRO.	ve and full wave rectifiers with and without filters- Obser	ve the waveforms	·
on CRO.			
Expected outco			
The students w	- F T F (
	est and validate various types of electrical motors		
	cquire knowledge on working of semiconductor devices		
II. A	equite knowledge on working of semiconductor devices		
	2014		
	2014		

Course code.	Course Name	L-T-P - Credits		ear of oduction
EE31	ELECTRICAL DRIVES & CONTROL FOR	Creans	11111	
	ELECTRICAL DRIVES & CONTROL FOR AUTOMATION	3-0-0-3	,	2016
Prerequisi	te : Nil			
Course O	bjectives			
	understand the basic concepts of different types of electric	cal machines	and the	ir
pe	formance.	AAA		
2. To	know the different methods of starting D.C motors and in	duction motor	rs.	
	introduce the controllers for automation	- A T		
•		A		
Syllabus	I LOUTIOLOUN	UT IL		
DC Mac	nines, transformers, three phase induction motor, single p	hase induction	n motor	, stepper
motor, co	ontrollers for automation.			
-	l outcome .			
	nts will be able to			
	lect a drive for a particular application based on power rati			
	lect a drive based on mechanical characteristics for a partic	cular drive ap	plicatio	n.
	scuss the controllers used for automation			
Text Bo			20.4	
	thari D. P. and I. J. Nagrath, Electrical Machines, Tata Mo			
	grath .I.J. & Kothari .D.P, Electrical Machines, Tata McG			2
	chard Crowder, Electrical Drives and Electromechanical s			
	ehta V. K. and R. Mehta, Principles of Electrical and Elect l., 1996.	romes, S. Cha		ompany
	eraja B. L. and A. K. Theraja, A Text Book of Electrical T	Cachnology S	Chand	87
	mpany Ltd., 2008.	cennology, s	. Chanc	i œ
	dam Subrahmaniam, Electric Drives (concepts and application)	ations) Tata N	AcGrav	v- Hill
20		ations), 1 ata 1	ie Grav	·,
Referen				
1. H.	Partab, Art and Science and Utilisation of electrical energy	, Dhanpat Ra	i and S	ons, 1994
	D.Singh, K. B. Khanchandani, Power Electronics, Tata M	-		,
	lai.S,K A first course on Electric drives, Wiley Eastern Lin			
	Course Plan			
	2014			Sem.
Module	Contents	H	lours	Exam Morlea
	DC Machines-principle of operation-emf equation-t	ypes of		Marks
	excitations. Separately excited, shunt and series exc	ited DC		150/
Ι	generators, compound generators. General idea of armature		5	15%
	OCC and load characteristics - simple numerical problems.			
	Principles of DC motors-torque and speed equations-torque			
	characteristics- variations of speed, torque and power with			1.501
II	current. Applications of dc shunt series and compound		5	15%
	Principles of starting, losses and efficiency – load tes	t- simple		
	numerical problems. FIRST INTERNAL EXAMINATION	NT I		
	FIKƏT INTERNAL EXAMINATIO	N		
III	Transformers - principles of operations - emf equation- vector		7	15%

	diagrams- losses and efficiency – OC and SC tests. Equivalent circuits-		
	efficiency calculations- maximum efficiency – all day efficiency –		
	simple numerical problems. Auto transformers constant voltage		
	transformer- instrument transformers.		
	Three phase induction motors- slip ring and squirrel cage types-		15%
137	principles of operation – rotating magnetic field- torque slip		
IV	characteristics- no load and blocked rotor tests. Circle diagrams-	7	
	methods of starting – direct online – auto transformer starting	_	
	SECOND INTERNAL EXAMINATION	4	
	Single phase motors- principle of operation of single phase induction	4	20%
	motor - split phase motor - capacitor start motor- stepper motor-		
\mathbf{V}	universal motor Synchronous machines types - emf equation of	8	
v	alternator - regulation of alternator by emf method. Principles of	8	
	operation of synchronous motors- methods of starting- V curves-		
	synchronous condenser		
	Stepper motors: Principle of operation, multistack variable reluctance		20%
	motors, single-stack variable reluctance motors, Hybrid stepper motors,		
	Linear stepper motor, comparison, Torque-speed characteristics,		
	control of stepper motors		
VI	Controllers for automation, servo control, Digital controllers,	8	
	Advanced control systems, Digital signal processors, motor controllers,		
	Axis controllers, Machine tool controllers, Programmable Logic		
	Controllers		

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts **Part A** There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: in all parts each question can have a maximum of four sub questions