Course code	Course Name	L-T-P- Credits	Year of Introduction	
ME302	Heat and Mass Transfer	3-1-0-4	2016	
Prerequis	ites : ME203 Mechanics of fluid			
Course O	Dbjectives:			
 To introduce the various modes of heat transfer and to develop methodologies for solving a wide variety of practical heat transfer problems To provide useful information concerning the performance and design of simple heat transfer systems To introduce mass transfer 				
Syllabus: Modes of Heat Transfer: Conduction: Most general heat conduction equation, One dimensional steady state conduction with and without heat generation, Critical radius of insulation, Elementary ideas of hydrodynamics and thermal boundary layers, Convection heat transfer: Newton's law of cooling, Dimensionless numbers, Dimensional analysis, Problems. Fins: Types of fins : Fin efficiency and effectiveness. Boiling and condensation heat transfer, Introduction to heat pipe. Transient heat conduction. Heat exchangers, LMTD and NTU methods. Radiation: laws of radiation, Electrical analogy, Radiation				
 Expected outcome: The students will be able to Apply principles of heat and mass transfer to engineering problems Analyse and obtain solutions to problems involving various modes of heat transfer Design heat transfer systems such as heat exchangers, fins, radiation shields etc 				
Text Boo 1. Sac Lin 2. R.k 3. Nag 4. Koo New	ks: chdeva R C, Fundamentals of Engineering Heat and Mass T nited, 2009 K.Rajput. Heat and mass transfer, S.Chand& Co.,2015 g P K., Heat and Mass Transfer, McGraw Hill,2011 thandaraman, C.P., Fundamentals of Heat and Mass Transfer w Delhi, 2006	ransfer, Nev er, New Age	w Age Science e International,	
Data Book: Heat and Mass Transfer data book: C.P. Kothandaraman, S. Subramanya, New age International publishers,2014 				
Reference 1. Yui 2. Hoi 3. Fra son	es Books: nus A Cengel, Heat Transfer: A Practical Approach, McGr Iman J P, Heat Transfer, McGraw Hill, 2011 nk P. Incropera and David P. Dewitt, Heat and Mass Tra is, 2011	aw Hill,201 ansfer, John	5 Wiley and	

Course Plan			
Module	Contents	Hours	End Sem. Exam Marks
Ι	Modes of Heat Transfer: Conduction: Fourier law of heat conduction-Thermal conductivity of solids, liquids and gases- Factors affecting thermal conductivity- Most general heat conduction equation in Cartesian, cylindrical and spherical coordinates One dimensional steady state conduction with and without heat generation conduction through plane walls, cylinders and spheres-variable thermal conductivity conduction shape factor- heat transfer through corners and edges. Critical radius of insulation.	12	15%
П	Elementary ideas of hydrodynamics and thermal boundary layers-Thickness of Boundary layer-Displacement, Momentum and Energy thickness (description only). Convection heat transfer: Newton's law of cooling- Laminar and Turbulent flow, Reynolds Number, Critical Reynolds Number, Prandtl Number, Nusselt Number, Grashoff Number and Rayleigh's Number. Dimensional analysis Buckingham's Pi theorem- Application of dimensional analysis to free and forced convection- empirical relations- problems using empirical relations	10	15%
	FIRST INTERNAL EXAMINATIONEXAM		
ш	Transient heat conduction-lumped heat capacity method. Fins: Types of fins - Heat transfer from fins of uniform cross sectional area- Fin efficiency and effectiveness. Boiling and condensation heat transfer(elementary ideas only),Introduction to heat pipe.	8	15%
IV	Combined conduction and convection heat transfer-Overall heat transfer coefficient - Heat exchangers: Types of heat exchangers, AMTD, Fouling factor, Analysis of Heat exchangers- LMTD method, Correction factor, Effectiveness- NTU method, Special type of heat exchangers (condenser and evaporator, simple problems only)	8	15%
	SECOND INTERNAL EXAMINATION		
V	Radiation- Nature of thermal radiation-definitions and concepts- monochromatic and total emissive power-Intensity of radiation- solid angle- absorptivity, reflectivity and transmissivity-Concept of black body- Planck' law- Kirchoff's law- Wein's displacement law-Stefan Boltzmann's law- black, gray and real surfaces-Configuration factor (derivation for simple geometries only)- Electrical analogy- Heat exchange between black/gray surfaces- infinite parallel plates, equal and parallel opposite plates-perpendicular rectangles having common edge- parallel discs (simple problems using charts and tables). Radiation shields(no derivation).	10	20%

VI	Mass Transfer :Mass transfer by molecular diffusion- Fick's law of diffusion- diffusion coefficient Steady state diffusion of gases and liquids through solid- equimolar diffusion, Isothermal evaporation of water through air- simple problems. Convective mass transfer- Evaluation of mass transfer coefficient- empirical relations- simple problems- analogy between heat and mass transfer.	8	20%
----	--	---	-----

Use of approved data book permitted

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME304	DYNAMICS OF MACHINERY	2-1-0-3	2016
Prerequisite: N	IE301 Mechanics of Machinery	A A	4
Course Object • To rec • To fre • To con	tives: impart knowledge on force analysis of machinery, be iprocating masses, Gyroscopes, Energy fluctuation in Machi introduce the fundamentals in vibration, vibration anal edom systems. understand the physical significance and design of vibration inditions	alancing of nes. ysis of sin tion system	rotating and gle degree of s with desired
Syllabus Force analysi Flywheel anal Vibrations – t vibration.	s of machinery - static and dynamic force analysis of ysis - static and dynamic balancing - balancing of rotating free vibrations of single degree freedom systems, damping	plane moti masses, gyr g, forced vib	on mechanisms. oscopic couples. oration, torsional
Expected out The students v 1. Develop t 2. Understar mechanis	come: vill be able to he design and practical problem solving skills in the are ad the basics of vibration and apply the concepts ms.	a of mecha in design	nisms 1 problems of
Text Books: 1. Ba 2. S. 3. V.	allaney P.L. Theory of Machines, Khanna Publishers,1994 S. Rattan, Theory of Machines, Tata McGraw Hill, 2009 P. Singh, Theory of Machines, Dhanpat Rai,2013)	
References : 1. E. 2. GI 20 3. 3. H. 4e 4. 5. J. 6. W	Wilson, P. Sadler, Kinematics and Dynamics of Machinery, nosh, A. K. Malik, Theory of Mechanisms and Machines, Af 03 Myskza, Machines and Mechanisms Applied Kinematic An , 2012 olowenko, Dynamics of Machinery, John Wiley, 1995 E. Shigley, J. J. Uicker, Theory of Machines and Mechanism .T.Thompson, Theory of vibration, Prentice Hall,1997	Pearson Ed filiated East alysis, Pears ns, McGraw	ucation, 2003 West Press, son Education, Hill,1995

Course Plan				
Module	ule Contents		End Sem. Exam	
	API ABDUL KALA	M	Marks	
I	Introduction to force analysis in mechanisms - static force analysis (four bar linkages only) - graphical methods	4	15%	
I	Matrix methods - method of virtual work - analysis with sliding and pin friction	3	1570	
II	Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, analysis of mechanisms (four bar linkages only), equivalent dynamical systems	4	15%	
	Force Analysis of spur- helical - bevel and worm gearing	3		
	FIRST INTERNAL EXAM			
TT	Flywheel analysis - balancing - static and dynamic balancing - balancing of masses rotating in several planes	4	150/	
111	Balancing of reciprocating masses - balancing of multi-cylinder in line engines - V engines - balancing of machines	3	15%	
	Gyroscope – gyroscopic couples	3		
IV	Gyroscopic action on vehicles-two wheelers, four wheelers, air planes and ships. Stability of an automobile – stability of a two wheel vehicle –Stabilization of ship.	4	15%	
	SECOND INTERNAL EXAM			
	Introduction to vibrations – free vibrations of single degree freedom systems – energy Method	2		
V	Undamped and damped free vibrations – viscous damping – critical damping - logarithmic decrement - Coulomb damping – harmonically excited vibrations	3	20%	
	Response of an undamped and damped system – beat phenomenon - transmissibility	2		
VI	Whirling of shafts – critical speed - free torsional vibrations – self excitation and stability analysis - vibration control - vibration isolation – vibration absorbers	4	20%	
	Introduction to multi-degree freedom systems - vibration measurement - accelerometer - seismometer - vibration exciters	3		
	END SEMESTER EXAM			

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

-51

Course code	Course Name	L-T-P- Credits	Year of Introduction		
ME306	ADVANCED MANUFACTURING TECHNOLOGY	3-0-0-3	2016		
Pre requisite: ME 220 Manufacturing Technology, ME303 Machine Tools and Digital Manufacturing					
Course Ob	jectives	ALA.	IVI		
 To introduce machining principles and processes in the manufacturing of precision components and products that use conventional and nonconventional technologies. To give basic understanding of the machining capabilities, limitations, and productivity of advanced manufacturing processes. To describe how PLC's operate and how they control automated equipment and systems To demonstrate tool path simulations with CNC powered equipment 					
5. To intro	duce CNC programming				
Syllabus:- Powder Me machining p	etallurgy- Programmable Logic Controllers- Carocess - high velocity forming of metals-material ac	NC- non-trad	litional and micro		
Expected o	utcome:				
i. Becc effec macl ii. App hard iii. Presc iv. Prog v. Selec	 The students will be able to i. Become conversant with the non- traditional machining process and to appreciate the effect of process parameters on the surface integrity aspects during the non- traditional machining process. ii. Appreciate the use of an EDM as a non traditional method of machining complex and hard materials. iii. Prescribe a laser materials processing technique suitable for a given product with material, size, precision, and surface quality requirements. iv. Program and operate a CNC mill and lathe. v. Select the tool material and machining process parameters. 				
Text books	/References				
 ASTM Davies publish Ibrahim Educati Jain V. M.P. G Prentic Petruze Yoram 	E, High velocity forming of metals, PHI, 1968. K and Austin E.R, Developments in high spee- ing Co, 1970. A Zeid, R Sivasubrahmanian CAD/CAM: The ion, 2009 K., Introduction to Micromachining, Narosa publish roover, E.M. Zimmers, Jr. CAD/CAM; Computer A e Hall of India, 1987 Ella Frank.D., Programmable logic controllers,McGr Koren, Computer control of manufacturing systems	d metal form ory & Pract hers,2014 Aided Design aw Hill,2016 s, TMH,2006	ing, the machinery ice, McGraw Hill and Manufacturing,		

Course Plan			
Module	Contents		End Sem. Exam. Marks
Ι	Introduction: Need and comparison between traditional, non- traditional and micro & nano machining process. Powder Metallurgy: Need of P/M - Powder Production methods:- Atomization, electrolysis, Reduction of oxides, Carbonyls (Process parameters, characteristics of powder produced in each method). Powder characteristics: properties of fine powder, size, size distribution, shape, compressibility, purity etc. Mixing – Compaction:- techniques, pressure distribution, HIP & CIP. Mechanism of sintering, driving force for pore shirking, solid and liquid phase sintering - Impregnation and Infiltration Advantages, disadvantages and specific applications of P/M. Programmable Logic Controllers (PLC): need – relays - logic ladder program –timers, simple problems only. Point to point, straight cut and contouring positioning - incremental and absolute systems – open loop and closed loop systems - control loops in contouring systems: principle of	1 1 1 1 1 1 1 1	15%
	operation. DDA integrator:-Principle of operation, exponential deceleration –liner, circular and complete interpolator.	1	
	NC part programming: part programming fundamentals - manual programming –	1	
	NC coordinate systems and axes — sequence number, preparatory functions, dimension words, speed word, feed world, tool world, miscellaneous functions –	1	
II	Computer aided part programming:- CNC languages - APT language structure: geometry commands, motion	1	15%
	commands, postprocessor commands, compilation control commands	1	
	Programming exercises: simple problems on turning and drilling etc - machining centers- 5 axis machining (At least one programming exercise must be included in the end semester University examination).	2	
	FIRST INTERNAL EXAMINATION		

ш	 Electric Discharge Machining (EDM):- Mechanism of metal removal, dielectric fluid, spark generation, recast layer and attributes of process characteristics on MRR, accuracy, HAZ etc, Wire EDM, applications and accessories. Ultrasonic Machining (USM):-mechanics of cutting, effects of parameters on amplitude, frequency of vibration, grain diameter, slurry, tool material attributes and hardness of work material, applications. Electro chemical machining (ECM):- Mechanism of metal removal attributes of process characteristics on MRR, accuracy, 	3	15%
IV	surface roughness etc, application and limitations. Laser Beam Machining (LBM), Electron Beam Machining (EBM), Plasma arc Machining (PAM), Ion beam Machining(IBM) - Mechanism of metal removal, attributes of process characteristics on MRR, accuracy etc and structure of HAZ compared with conventional process; application, comparative study of advantages and limitations of each process. Abrasive Jet Machining (AJM), Abrasive Water Jet Machining (AWJM) - Working principle, Mechanism of metal removal, Influence of process parameters, Applications, Advantages & disadvantages.	3	15%
	SECOND INTERNAL EXAMINATION		
	High velocity forming of metals:-effects of high speeds on the stress strain relationship steel, aluminum, Copper – comparison of conventional and high velocity forming methods, deformation	3	
V	velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body	2	20%
V	velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity. Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc. Electro hydraulic forming: - theory, process variables, etc, comparison with explosive forming.	2 2 1	20%
V	 velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity. Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc. Electro hydraulic forming: - theory, process variables, etc, comparison with explosive forming. Micromachining: Diamond turn mechanism, material removal mechanism applications 	2 2 1 1	20%
V	 velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity. Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc. Electro hydraulic forming: - theory, process variables, etc, comparison with explosive forming. Micromachining: Diamond turn mechanism, material removal mechanism, applications. Advanced finishing processes: - Abrasive Flow Machining, Magnetic Abrasive Finishing. 	2 2 1 1 2	20%
V V1	 velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity. Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc. Electro hydraulic forming: - theory, process variables, etc, comparison with explosive forming. Micromachining: Diamond turn mechanism, material removal mechanism, applications. Advanced finishing processes: - Abrasive Flow Machining, Magnetic Abrasive Finishing. Magnetorheological Abrasive Flow Finishing, Magnetic Float Polishing, Elastic Emission Machining. 	2 2 1 1 2 3	20%

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME308	COMPUTER AIDED DESIGN AND ANALYSIS	3-0-0-3	2016
Prerequisite: N	IE201 Mechanics of solids	IAN	A
Course Object 1. To impart 2. To introdu 3. To introdu Syllabus Introduction to	tives: basic knowledge on Computer Aided Design metho ice the fundamentals of solid modelling ice the concepts of finite element analysis procedure o CAD/CAM, Basics of geometric and solid modelin	ds and proced es. ng, transformat	ures
points, lines, s interpolation, i	surfaces and solid models. Introduction to finite eleme soparametric formulation, applications.	ent analysis, so	olution procedures
Expected out The students w 1. Gain a bas 2. Understan 3. Have a ba	come: vill be able to sic knowledge on Computer Aided Design methods a d the fundamentals of solid modelling sic knowledge in finite element analysis procedures	and procedure	s
 Text Books: M.P. Groc Prentice H. T. R. Char Education 	over, E.M. Zimmers, Jr.CAD/CAM; Computer Aided De all of India, 1987 adrupatla and A. D. Belagundu, Introduction to Finite E 2001	esign and Manu lements in Eng	ifacturing, ineering, Pearson
 References: Chris Mcr Manageme D. F. Rog Hill,1990 Daryl Loga Daryl Loga David V H Donald He Pearson Ec Grigore Bu Ibrahim Ze P. Radhaku 	nahon and Jimmie Browne - CAD/CAM – Principle ont, Addision Wesley England,1998 gers and J. A. Adams, Mathematical Elements in Co an, A First course in Finite Element Method, Thomson I utton, Fundamentals of Finite Element Analysis, THM,2 earn, M. Pauline Baker and Warren Carithers, Comp lucation,2001 urdea, Philippe Coiffet, Virtual Reality Technology, John id, CAD/ CAM Theory and Practice, McGraw Hill,2007 ishnan and S. Subramanyan, CAD / CAM / CIM, New 2	e Practice and omputer Graph Learning,2007 2003 uter Graphics n Wiley and so 7 Age Int. Ltd.,20	Manufacturing nics, McGraw- with open GL, ns,2003

Course Plan				
Module	Contents	Hours	End Sem. Exam	
	A DI A RIDI II VALA	NA	Marks	
I	Introduction to CAD, Historical developments, Industrial look at CAD, Comparison of CAD with traditional designing, Application of computers in Design	2		
	Basics of geometric and solid modeling, Packages for CAD/CAM/CAE/CAPP	1	15%	
	Hardware in CAD components, user interaction devices, design database, graphic Standards, data Exchange Formats, virtual Reality.	4		
	Transformation of points and line, 2-D rotation, reflection, scaling and combined transformation, homogeneous coordinates, 3-D scaling.	4		
Π	Shearing, rotation, reflection and translation, combined transformations, orthographic and perspective projections, reconstruction of 3-D objects.	3	15%	
	FIRST INTERNAL EXAM			
ш	Algebraic and geometric forms, tangents and normal, blending functions, reparametrization, straight lines, conics, cubic splines, Bezier curves and B-spline curves.	4	15%	
	Plane surface, ruled surface, surface of revolution, tabulated cylinder, bi- cubic surface, bezier surface, B-spline surfaces and their modeling techniques.	3		
IV	Solid models and representation scheme, boundary representation, constructive solid geometry.	3	15%	
	Sweep representation, cell decomposition, spatial occupancy enumeration, coordinate systems for solid modeling.	4		
	SECOND INTERNAL EXAM			
	Introduction to finite element analysis - steps involved in FEM- Preprocessing phase – discretisation - types of elements	2		
V	Formulation of stiffness matrix (direct method, 1-D element) - formulation of load vector - assembly of global equations - implementation of boundary conditions - solution procedure - post processing phase	3	20%	
	Simple problems with axial bar element (structural problems only)	2		
VI	Interpolation – selection of interpolation functions - CST element - isoparametric formulation (using minimum PE theorem) – Gauss- quadrature	4	20%	

	Solution of 2D plane stress solid mechanics problems (linear static analysis) 3
I	END SEMESTER EXAM
	AD A Poly Paper Pattern A LA
Maximum	marks: 100 Time: 3 hrs
The question	on paper should consist of three parts
Part A	UNIVERSITY
There shou	ald be 2 questions each from module I and II
Each quest	tion carries 10 marks
Students w	vill have to answer any three questions out of $4 (3X10 \text{ marks} = 30 \text{ marks})$
Part B	
There shou	ald be 2 questions each from module III and IV
Each quest	tion carries 10 marks

Estd

2014

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Course	Course Name	L-T-P-	Year of
code		Credits	Introduction
ME312	METROLOGY AND INSTRUMENTATION	3-0-0-3	2016

Prerequisite: Nil

Course Objectives:

- To understand the working of linear and angular measuring instruments.
- To familiarize with the working of optical measuring instruments and fundamentals of limits and limit gauges.
- To give basic idea about various methods for measurement of screw thread and surface finish parameters.
- To give an exposure to advanced measuring devices and machine tool metrology.
- To provide students an overview of mechanical measurement systems and principle of instruments for motion and dimension measurement.
- To provide basic idea about working principle and applications of devices for measurement of force and torque; strain and stress and temperature.

Syllabus

Introduction to Metrology - Errors in Measurement- Basic standards of length - Linear Measurement, Comparators - Angular Measurement - Limits and Limit gauges - Optical Measuring Instruments - Screw thread measurement - Measurement of surface texture - Machine tool metrology - Coordinate Measuring Machine (CMM) and Machine Vision.

Introduction to Mechanical Measurement - Motion and Dimension measurement, Strain and Stress Measurement - Measurement of Force, Torque and Temperature Measurement.

Expected outcome:

The students will be able to

- i. Understand the working of linear and angular measuring instruments.
- ii. Know the fundamentals of limits and limit gauges, various methods for measurement of screw thread and surface roughness parameters and the working of optical measuring instruments.
- iii. Get an exposure to advanced measuring devices and machine tool metrology.
- iv. Acquire an overview of mechanical measurement systems and principle of instruments for motion and dimension measurement.
- v. Get basic idea about working principle and applications of devices for measurement of force and torque; strain and stress and temperature.

Text books

- 1. Anand K Bewoor, Vinay A Kulkarni, Metrology & Measurement, McGraw-Hill, 2009
- 2. Ernest O. Doebelin, Dhanesh N. Manik, Measurement Systems Application and Design, McGraw-Hill, 2004
- 3. Galyer J.F.W., Schotbolt C.R., Metrology for Engineers, ELBS, 1990
- 4. Thomas G. Beckwith, John H. L., Roy D. M., Mechanical Measurements, 6/E, Pearson Prentice Hall, 2007

Reference books

- 1. ASME, Hand book of Industrial Metrology, 1998
- Hume K. J., Engineering Metrology, Macdonald &Co. Ltd.,1990
 J.P.Holman, Experimental Methods for Engineers, Mcgraw-Hill, 2007
- 4. Sharp K.W.B., Practical Engineering Metrology, Sir Isaac Pitman & Sons Ltd., 1958

Course Plan				
Module	TECHNContents LOGICA	н	ours	End Sem. Exam. Marks
	Concept of measurement:-Introduction to Metrology; Need for high precision measurements; Terminologies in Measurement- Precision, accuracy, sensitivity, calibration.		1	
	Errors in Measurement, types of errors, Abbe's Principle.		1	
I	Basic standards of length- Line standard, End standards, Wavelength standard; Various Shop floor standards.		1	15%
	Linear Measurement – Slip gauges, wringing, grades; Surface plate; Dial indicators; Height gauges and Vernier calipers.		1	
	Comparators- mechanical, electrical, optical and pneumatic.		1	
	Angular Measurement – Bevel protractor; Sine Bar, principle and use of sine bar, sine centre; Angle gauges.		1	
	Sprit level; Angle Dekkor; Clinometers.		1	
	Limits and Limit gauges – Making to suit, selective assembly, systems of limits and fits; Types of fits; Hole basis system and Shaft basis system.		1	
	Standard systems of limits and fits; Shaft and Hole system; Tolerance, allowance and deviation (as per BIS).	7	1	
	Simple problems on tolerance and allowance, shaft and hole system.		1	
	Limit Gauges – GO and NO GO gauges; types of limit gauges.		1	15%
II	Gauge design - Taylor's principle of gauging; Gauge tolerance, disposition of gauge tolerance, wear allowance.		1	
	Optical Measuring Instruments: - Benefits of using light waves as standards; Monochromatic light; Principle of Interference.		1	
	Interference band using optical flat, application in surface measurement.		1	
	Interferometers – NPL flatness interferometer, Pitter-NPL gauge interferometer.		1	
	FIRST INTERNAL EXAMINATION			
	Screw thread measurement – Screw thread terminology; Measurement of major diameter; Measurement of minor or root		1	
	diameter.			
	Measurement of pitch; Measurement of effective diameter with two wire method and three wire method.		1	
	Measurement of flank angle and form by profile projector and		1	

	microscope.		
	Measurement of surface texture – Meaning of surface texture,	1	
	roughness and waviness; Analysis of surface traces, peak to valley		
III	height, R.M.S. value, Centre Line Average and R ₂ value, Rt, Rz		
	etc		
	Methods of maggining surface roughness. Studie prohe	1	15%
	methods of measuring surface foughness – Stylus probe,	I	13 /0
	Tomlinson surface meter, Talysurf; Terms used in surface		
	roughness measurement – assessment length, roughness width cut-		
	off, sampling length and evaluation length.	A	
	Interference method for measuring surface roughness – using	1	
	optical flat and interferometers.		
	Autocollimator, principle and use of autocollimator	1	
	Machine tool metrology Alignment testing of machine tools like	1	
	latha milling maching drilling maching	1	
	Advanced measuring devices – Laser interferometers.	1	
	Coordinate Measuring Machine (CMM) – Introduction to CMM;	1	
	Components and construction of CMM.		
IV	Types of CMM: Advantages and application of CMM	1	15%
	CMM probes types of probes contact probes and non contact	1	
	evitive probes, types of probes – contact probes and non contact	1	
	Machine Vision – Introduction to machine vision, functions,	1	
	applications and advantages of machine vision.		
	Steps in machine vision	1	
	SECOND INTERNAL EXAMINATION		
	Introduction to Mechanical Measurement – significance of	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement: Fundamental methods of measurement:	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument.	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers.	1	
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices –	1 1 1 1 1	20%
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability,	1 1 1 1 1	20%
	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold,	1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration.	1	20%
v	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration.	1 1 1 1 1 1 1 1	20%
v	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response- Measuring lag Fidelity, Dynamic error; Types of errors	1 1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement	1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement.	1 1 1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers.	1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle,	1 1 1 1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations.	1 1 1 1 1 1 1	20%
V	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge	1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation.	1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells.	1 1 1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three	1 1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal	1 1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal.		20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal. Torque Measurement – Dynamometers – Mechanical, Hydraulic and Eleatrical	1 1 1 1 1 1 1 1 1 1 1 1	20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal. Torque Measurement – Dynamometers – Mechanical, Hydraulic and Electrical.		20%
V V1	Introduction to Mechanical Measurement – significance of mechanical measurement; Fundamental methods of measurement; Classification of measuring instrument. Stages in generalized measuring system – Sensor-Transducer stage, Signal-Conditioning stage, Readout-Recording stage; Types of input quantities; Active and Passive transducers. Performance characteristic of measuring devices – Static characteristics – Accuracy, Precision, Repeatability, Sensitivity, Reproducibility, Drift, Resolution, Threshold, Hysteresis, Static calibration. Dynamic characteristics- different order systems and their response-, Measuring lag, Fidelity, Dynamic error; Types of errors in measurement. Transducers – Working, Classification of transducers. Motion and Dimension measurement – LVDT – Principle, applications, advantages and limitations. Strain and Stress Measurement - Electrical resistance strain gauge - Principle, operation. Measurement of Force and Torque – Strain-Gauge Load Cells, Hydraulic and Pneumatic load cells – basic principle and three component force measurement using piezoelectric quartz crystal. Torque Measurement – Dynamometers – Mechanical, Hydraulic and Electrical. Vibration measurement – Vibrometers and Accelerometers – Basic	1 1 1 1 1 1 1 1 1 1 1 1	20%

Temperature Measurement – Use of Thermal Expansion – Liquid- in-glass thermometers, Bimetallic strip thermometer, Pressure thermometers.	1	20%
Thermocouples – Principle, application laws for Thermocouples,	1	
Thermocouple EMF.		
Resistance Temperature Detectors (RTD); Thermistors;	1	
Pyrometers (Basic Principles).		
END SEMESTED EVAMINATION	1	

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME332	COMPUTER AIDED DESIGN AND ANALYSIS LAB	0-0-3-1	2016
Prerequisit	te: ME308 Computer aided design and analysis	LAN	1
Course O	bjectives: To provide working knowledge on Computer Aided Design me To impart training on solid modelling software To impart training on finite element analysis software	thods and pr	ocedures
Syllabus Introduc Exercise a. Creat b. Creat (mini Exercise systems a. St b. T c. F	ction to solid modeling and Finite Element Analysis software. es on modeling and assembly. ion of higher end 3D solid models.(minimum 3 models) ion of assembled views of riveted joints, cotter joints and shaft mum 3 models) es on the application of Finite Element Method/Finite Volume 2 :- tructural analysis. (minimum 3 problems) hermal analysis. (minimum 2 problems) luid flow analysis. (minimum 1 problem)	couplings. Method to e	ngineering
Expected The studer	outcome: ts will be able to		
i. ii.	Gain working knowledge in Computer Aided Design methods a Solve simple structural, heat and fluid flow problems using sta	and procedur andard softw	es are
Points to r	note:Any appropriate solid modeling software (like CATIA, Solids VSolid Edge and NX, free software, etc.) and package (like ANSNASTRAN, ABAQUS, ADINA, Siemens Femap Nastran, freeEvaluationClass exercises60 marksRegular class viva10 marksFinal internal exam using software30 marksAll the above three evaluations are mandatory.	Works, ProE. YS, Comsol software etc	, IDEAS, Siemens Multi Physics, .) may be used.
Reference 1. 2. 3. 4. 5.	es Books: Daryl Logan, A First course in Finite Element Method, Thomso David V Hutton, Fundamentals of Finite Element Analysis, Tat Ibrahim Zeid, CAD/ CAM Theory and Practice, McGraw Hill, Mikell P. Groover and Emory W. Zimmer, CAD/ CAM – Com manufacturing, Pearson Education, 1987 T. R. Chandrupatla and A. D. Belagundu, Introduction to Finite Pearson Education, 2012	on Learning, a McGraw H 2007 puter aided d e Elements in	2007 Iill,2003 lesign and Engineering,

Course code	Course Name	L-T-P- Credits	Int	Year of troduction
ME334	MANUFACTURING TECHNOLOGY LABORATORY – II	0-0-3-1		2016
Prerequis	ite: ME312 Metrology and Instrumentation	AN	(
Course O • To • To • To • To	bjectives: provide programming practice on CNC machine tools impart knowledge on the fundamental concepts and princi- explain the need of various modern measuring instruments	ples of metro and precision	ology on me	easurements
	sper ments/ Exercises.			565510115
Exercise or	n grinding machine			1
Study and step turning	preparation of program, simulation and exercise on CNC g, taper turning, thread cutting, ball and cup turning etc.	C lathe:-turni	ing,	2
Study and j - surface m	preparation of program, simulation and exercise on CNC n illing, pocket milling, contour milling etc.	nilling machi	ine:	2
Basics for Calibration Determinat height gaug Determinat slip gauges Experimen Determine	mechanical measurements of vernier caliper, micrometer and dial gauge etc. tion of dimensions of given specimen using vernier calip ge, bore dial gauge etc. tion of dimensions of a rectangular, square, cylindrical spec and comparing with height gauge/vernier caliper etc of son Limits, Fits and Tolerance the class of fits between given shaft and hole. etc.	er, microme	ter,	1
Linear me Study of di Calibration	asurements fferent linear measuring instruments. of LVDT using slip gauges.	1		1
Straightne Study of d collimator Measurem comparing laser interf To check s	ss error measurement ifferent straightness error measuring instruments – basic p and spirit level. ent of straightness error of a CI surface plate using auto with sprit level. erometer used to determine straightness error traightness error of a straight edge by the wedge method us	collimator	uto and ges.	1
Angle mea Angular m dekkor etc. Measureme Measureme	surements easurements using bevel protractor, combination sets, cli ent of angle and width of a V-block and comparing with con ent of angle using sine bar of different samples.	nometers, an	igle ts.	1

Out of roundness measurement	
Study of different methods used for measurement out of roundness	
Measurement of out of roundness using form measuring instrument	1
Measurement of out of roundness using V-block and dial gauge	
Measurement of out of roundness using bench centre and dial gauge etc.	
Screw thread measurement	
Measurement of screw thread parameters using two wire and three wire method.	
Measurement of screw thread parameters using tool maker's microscope etc.	1
Measurement of screw thread parameters using thread ring gage, thread plug gage,	1
thread	
snap gage, screw thread micrometer, optical comparator etc.	
Bore measurement	
Measurement of a bore by two ball method.	
Measurement of a bore by four ball method.	1
Bore measurement using slip gauges and rollers.	
Bore measurement using bore dial gauge etc.	
Calibration and determination of uncertainties	
Strain measurement using strain gauge load cells.	
Calibration of a cantilever strain gauge load cell.	1
Rotation measurement	
Determination of rpm using tachometer, optical tachometer and stroboscope, etc.	
Area determination	
Study of planimeter and Green's theorem	1
Determination of given irregular area using planimeter.	
Gear metrology	
Types of gears – gear terminology – gear errors - study of Profile Projector.	
Measurement of profile error and gear parameters using profile projector etc.	1
Use of Comparators	
Exercise on comparators: mechanical, optical, pneumatic and electronic comparators.	
Use of Tool makers microscope	
Study of tool maker's microscope – use at shop floor applications.	
Measurement of gear tooth parameters using tool maker's microscope.	1
Measurement of different angles of single point cutting tool using tool maker's	
microscope.	
Surface roughness measurement	
Measurement of surface roughness using surface profilometer /roughness measuring	1
machine of turned, milled, grounded, lapped and glass etc specimens.	
Squareness measurement	
Determination of squareness of a trisquare using angle plate and slip gauges.	1
Flatness measurement	
Study of optical flat and variation of fringe patterns for different surfaces	
Determination of narallelism error between micrometer faces	1
Compare given surface using ontical flat with interpretation chart	
Vibration measurement	
Measurement of displacement, velocity and acceleration of vibration	1
measurement of displacement, verocity and acceleration of violation.	

Use of Pneumatic comparator Checking the limits of dimensional tolerances using pneumatic comparator		
Calibration using air plug gauge etc		
Reference books		
1. Collett, C.V. and Hope, A.D, Engineering Measurements, Seco ELBS/Longman,1983	ond edition,	
2. Sharp K.W.B. and Hume, Practical Engineering Metrology, Sir Isaac Pitman London,1958	and sons Ltd,	
3. Shotbolt C.R. and Gayler J.F.W, Metrology for Engineers, 5 th edition, ELBS, Lor	idon,1990	
A Vorom Koron Numerical Control of Machine Tools McCrow Hill 1082		

4. Yoram Koren, Numerical Control of Machine Tools, McGraw-Hill, 1983

A minimum of 12 experiments are mandatory but the experiments/exercises in CNC machines are mandatory.

The academic evaluation shall be carried out by faculty.

Course code	e code Course Name L-T-P - Credits		Year of		
			Introduction		
**352	Comprehensive Examination	0-1-1-2	2016		
Prerequisite : Nil					

Course Objectives

- To assess the comprehensive knowledge gained in basic courses relevant to the branch of study
- To comprehend the questions asked and answer them with confidence.

Assessment

Oral examination – To be conducted by the college (@ three students/hour) covering all the courses up to and including V semester– 50 marks

Written examination - To be conducted by the Dept. on the date announced by the University– common to all students of the same branch – objective type (1 hour duration)– 50 multiple choice questions (4 choices) of 1 mark each covering the six common courses of S1&S2 and six branch specific courses listed – questions are set by the University - no negative marks – 50 marks.

Note: Both oral and written examinations are mandatory. But separate minimum marks is not insisted for pass. If a students does not complete any of the two assessments, grade I shall be awarded and the final grade shall be given only after the completion of both the assessments. The two hours allotted for the course may be used by the students for discussion, practice and for oral assessment.

Expected outcome.

• The students will be confident in discussing the fundamental aspects of any engineering problem/situation and give answers in dealing with them

Course code	Course Name	L-T-P- Credits	Y Intr	ear of oduction	
ME362	Control System Engineering	3-0-0-3		2016	
Course O 1. To 2. To 3. To	Course Objectives: : 1. To introduce the concepts of controls and modelling of physical systems. 2. To give idea on system response analysis and stability of systems. 3. To use different methods to analyse stability of control systems				
Syllabus: Control sy Transient a method. F Expected 1. To 2. To	Syllabus: Control systems and components, Mathematical models, Block diagrams, Signal Flow graphs, Transient and Steady state response analysis, Stability , Routh's stability criterion, Root locus method. Frequency response analysis using polar plots ,Bode plots, Nyquist stability criterion Expected Outcomes: At the end of the course students will be able 1. To model and analyse physical systems. 2. To analyse the stability of feedback control systems				
Text book 1. Ku 2. Th 19 3. 3. Na 200 Reference 1. Og 2. NE	 1. To undryse the stability of receduter control systems Text books: Kuo, B. C., Automatic Control Systems, Prentice Hall,2012 Thaler and Brown, Analysis and Design of Feedback Control Systems, McGraw Hill, 1960. Nagrath I J and Gopal M, Control Systems Engineering, New Age India Pvt Limited, 2009 References: Ogata, K., Modern Control Engineering, Pearson Education, 2004 			w Hill, imited,	
En	gineering COURSE PLAN		11565 0		
Module	Contents	H	lours	End Sem. Exam. Marks	
Ι	Introduction to control systems. Elementary ideas on control systems- Open loop and closed loop systems systems, Automatic regulating systems, Process control Adaptive control systems, Learning control systems, control systems, Multivariable control systems, Linear a linear systems. Elementary ideas on types of proportional, integral, proportional integral, proportional derivative controls. Direct and indirect controls. Math models of physical systems – typical examples of me thermal, electrical, hydraulic and pneumatic systems.	types of , Servo systems, Discrete and Non- controls- l integral mematical chanical,	7	15%	
п	Block diagram, transfer function, reduction of block d signal flow graphs :Manson's gain formula. Control components – servomotors, stepper motor, synchros, h pumps and motors, hydraulic valves, pneumatic pneumatic valve, pneumatic relay, pneumatic gyroscopes (elementary ideas only. No derivations)	liagrams, l system nydraulic bellows, actuator,	7	15%	

	FIRST INTERNAL EXAMINATION		
III	System response- Time response of first and second order systems, steady state errors and error constants, specifications in time domain. Effect of pole locations, Concept of stability, Routh's stability criterion	7	15%
IV	Root locus method of analysis and design. Lead and lag compensation	7	15%
	SECOND INTERNAL EXAMINATION	1	
V	Frequency response analysis- relationship between time & frequency response, Bode's plot, stability in frequency domain, gain margin and Phase margin	7	20%
V1	Polar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain margin and phase margin.	7	20%
	END SEMESTER EXAMINATION		

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Time: 3 hrs

Course co	de Course Name I	L-T-P- Credits	Year of Introduction	
ME364	Turbomachinery 3	3-0-0-3	2016	
Prereauisi	te : ME205 Thermodynamics			
Course Objectives: : 1. To know the principle of operation of turbomachines 2. To provide students thorough understanding of velocity triangles, turbomachinery 3. To introduce students to fans, turbines, pumps etc Svllabus:				
Definition turbomachic compressor	of turbomachine, Application of first and second laws nes, Efficiencies, Centrifugal fans and blowers, Centrifugal rs, Axial and radial flow turbines	s of therm Compresse	nodynamics to ors, Axial flow	
Expected	Dutcomes:			
The studen	ts will be able to			
1. Uno 2. Gai	lerstand the operation of turbomachines n ideas on performance characteristics, governing and select	tion of turb	omachinery.	
Text books	5			
 Bruneck, Fans, Pergamom Press, 1973. Dixon, S.I, Fluid Mechanics and Thermodynamics of Turbomachinery, Pergamom, Press, 1990. Ganesan .V, Gas Turbines, Tata McGraw Hill Pub. Co., New Delhi, 1999. Stepanff, A.J, Blowers and Pumps, John Wiley and Sons Inc., 1965. Yahua S.H. Turbines, Communication and Force. Tata Ma Crew Hill, 1006. 				
Reference	hooks			
1. Ear 2. She	Logan, Jr, Hand book of Turbomachinery, Marcel Dekker pherd, D.G, Principles of Turbomachinery, Macmillan, 196	Inc, 1992. 59.		
	Course Plan			
Module	Contents	Hours	End Sem. Exam. Marks	
I	Definition of turbomachine, parts of turbomachines, Comparison with positive displacement machines, Classification, Dimensionless parameters and their significance, Effect of Reynolds number, Unit and specific quantities, model studies.	7	15%	
II	Application of first and second laws of thermodynamics to turbomachines, Efficiencies of turbomachines. Stage velocity triangles, work and efficiency for compressors and turbines	7	15%	
I	Comparison with positive displacement machines. Classification, Dimensionless parameters and their significance, Effect of Reynolds number, Unit and specific quantities, model studies. Application of first and second laws of thermodynamics to turbomachines, Efficiencies of turbomachines. Stage velocity triangles, work and efficiency for compressors and turbines FIRST INTERNAL EXAMINATION	7	15% 15%	

III	Centrifugal fans and blowers : Types, stage and design parameters, flow analysis in impeller blades, volute and diffusers, losses, characteristics curves and selection, fan drives and fan noise.	7	15%
IV	Centrifugal Compressors: Construction details, types, impeller flow losses, slip factor, diffuser analysis, losses and performance curves.	47V	15%
	SECOND INTERNAL EXAMINATION	AI	
V	Axial flow compressors : Stage velocity triangles, enthalpy- entropy diagrams, stage losses and efficiency, work done factor, simple stage design problems and performance characteristics.	7	20%
V1	Axial and radial flow turbines : Stage velocity diagrams, reaction stages, losses and coefficients blade design principles, testing and performance characteristics.	7	20%
	END SEMESTER EXAMINATION		

Estd.

2014

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME366	ADVANCED METAL JOINING TECHNOLOGY	3-0-0-3	2016
	Prerequisite : Nil	ICA	IVI
Course (Dbjectives	I A	
• To tec	expose the students to the fundamental concept hnologies and their relevance	ots of adva	anced welding
Syllabus	OTTEROT		
Radiant en	nergy welding, Electron beam and Laser beam weld	ding, Plasm	a arc welding,
Micro pla	sma welding, Magnetically impelled arc butt weld	ing, Under	water welding,
Explosive	welding, Adhesive bonding, Friction welding, Fric	tion stir we	elding, Friction
stir proces	sing, Diffusion welding, Cold Pressure welding, Ul	trasonic we	lding, Vacuum
brazing.			
Expected	outcome		
• Th	e students will be able to understand the advancement	its in weldin	ng technologies
and	products and processes	eading to tr	le development
Reference	s Books.		
1. ASM	Metals Hand Book "Welding and Brazing", Vol. 6, A	SM, Ohio, 1	1988.
2. Parma	r R.S., "Welding Processes and Technology", Khanna	a Publishers	, Delhi, 1998.
3. Parme	r R. S., Welding Engineering and Technology", Khan	na Publishe	ers, 1997
4. Rossi,	Welding Engineering, McGraw Hill, 1954.	1070	
5. Schwa	rtz M.M., "Metals Joining Manual", McGraw-Hill In	C., 1979. w Vork 10	67
7 Weldi	is Engineers Hand Book- ASHE Vol I II III and IV	W TOIK, 19 7	07.
	Course Plan		
Module	Contents 014	Но	End Sem. Exam Marks
I	Radiant energy welding: Electron Beam Wel Background of the Process, Guns, Weld Environ Welding in Different Degrees of Vacuum, Equip and Safety, Joint Design, Applications, Laser Welding, Physics of Lasers, Types of Lasers, Pr Parameters, Applications and Limitations.	lding- ment, oment Beam rocess	15%

Π	Diffusion Welding- theory and Principle of Process, Key Variables, Intermediate Materials, Deformation Welding, Equipment and Tooling, Joint Design, Economics, Advantages and Limitations, Materials and Applications, Cold Pressure Welding- Process, Equipment and Setup, Applications	6	15%
	FIRST INTERNAL EXAM	ΑM	
III	Explosive Welding- theory and Key Variables, Parameters, Weld Quality, Equipment and Tooling, Advantages and Limitations, Joint Design, Materials and Applications, Adhesive Bonding- theory and Key Parameters, Physical Characteristics, Metal Adhesive, Equipment, Design, Economics of Process, Materials and Applications.	7 7	15%
IV	Ultrasonic welding-Principles of operation, Process Characteristics and Applications, Vacuum brazing- Theory, Mechanisms and Key Variables, Equipment and Tooling, Stop-Off and Parting Agents, Advantages, Limitations, Economics Materials and Applications.	6	15%
	SECOND INTERNAL EXAM		
V	Plasma arc welding: Plasma Arc Welding- theory and Principles, Transferred arc and Non-Transferred arc Techniques, Equipment and Tooling, Joint Design Advantages, Disadvantages, Economics, Materials and Applications, Needle Arc Micro Plasma Welding - Characteristics of Process, Operating Characteristics, Fixturing and Joint Design, Shielding, Weld Penetration and Shape, Applications, Magnetically impelled arc butt (MIAB) welding, Under Water Welding- Wet and Dry Under Water Welding	8	20%
	Friction Welding- Basic Principles, Process Variants,	1	
VI	Different Stages of Friction Welding, Mechanism of Bonding, Influence of Process Parameters, Weld Quality and Process Control, Joining of Dissimilar Materials, Advantages, Limitations and Applications, Friction Stir Welding-Metal flow phenomena, tools, process variables and applications, Friction Stir Processing-Process, Application	8	20%

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

Course code	Course Name	L-T-P- Credits	Ye Intro	ar of duction
ME368	Marketing Management	3-0-0-3	2	016
	Prerequisite : Nil			
Course Ob	jectives: :			
 To To To 	introduce the concept of market and marketing give idea about launching a new product introduce the various marketing strategies	LAN	N	
Syllabus:		A		
Introductio communica	n to marketing, Social and Marketing planning, Constitution, Designing the message, New trends in marketing	sumer beh	avior, N	larketing
Expected (Dutcomes:			
The studen	ts will be able to			
i. stat	e the role and functions of marketing within a range of org	anizations		
ii. dese mar	cribe key marketing concepts, theories and techniques for a keting situations.	analyzing	a variety	of
iii. ider	ntify and demonstrate the dynamic nature of the environme	ent in whic	h market	ing
dec	isions are taken			
iv. syn	thesize ideas into a marketing plan	-		
Text books	umdar R. Marketing Research Text Applications an	d Case Si	udies N	
I. Ivia	rnational (P) 1991	u Case 5	luules, N	iew Age
2. Rar	naswamy V.S. & Namkumari S. Marketing Management	: Planning	. Implen	nentation
and	Control, Macmillan India Limited, 2002		r ·	
3. Rot	pert, Marketing Research, Prentice Hall of India, 1999			
4. T N	Chabra and S K Grover : Marketing management, Dhanp	at Rai, 200)7	
Reference	books:			
1. Kot	ler P, Marketing Management: Analysis, Planning, Im	plementat	ion and	Control,
Prei	ntice Hall of India, 1993		MC	TT*11
2. Stat	reational Edition 1004	Marketin	ig, McG	raw Hill
Inte				
				Fnd
Module	Contents 4		Hours	Sem. Exam. Marks
	Introduction to marketing - concept of market and mark	teting –		
Ι	marketing environment - controllable factors - factors dire	ected by	7	15%
	factors - demography economic conditions, comparision	rollable		
	Social and Marketing planning - marketing planning p	OCESS -		
п	Boston consultancy group model - marketing mix - ma mix variables. Developing, testing and launching of products.	arketing of new	7	15%

	FIRST INTERNAL EXAMINATION		
III	Market segmentation and market targeting - introduction to segmentation - targeting and product positioning. Marketing research - need and scope - marketing research process – research objectives, developing research plan, collecting information, analysis, and findings.	7	15%
IV	Consumer behaviour - factors influencing consumer behaviour - perceived risks Product life cycle - marketing strategies for different stages of product life cycle	6	15%
SECOND INTERNAL EXAMINATION			
V	Marketing communication - marketing mix variables - steps in developing effective communication - identification of target audience - determination of communication objectives	7	20%
V1	Designing the message - selecting the communication channels - promotion mix evaluation - advertising and sales promotion - factors in advertising - sales promotion tools. New trends in marketing- Brand management - significance of branding to consumers and firms	8	20%

END SEMESTER EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction	
ME372	Operations Research	3-0-0-3	2016	
Prerequis	ite -Nil			
Course O • To • To	bjectives: understand the role of operation research in decision mak impart the various operation research techniques for effect	ting tive problem s	solving.	
Syllabus: Operations sequencing theory – si	s research models, linear programming, transportation p g problem, network analysis, queuing theory, inventory c mulation.	roblem, assign ontrol, decisio	ment problem, n theory, game	
Expected	Outcome:			
• The sol	e students will be able to understand operations research ving practical problems in industry.	techniques and	l apply them in	
 Text Books: Miller, D. M. and Schmidt, J. W., Industrial Engineering and Operations Research, John Wiley & Sons, Signapore, 1990. Paneerselvam, R., Operations Research, Prentice Hall of India, New Delhi, 2008. Pannerselvam, R., Design and Analysis of Algorithms, Prentice Hall of India, New Delhi, 2007. Srinivasan, G. "Operations Research-Principles and Applications", Latest edition, PHI Pvt. Ltd., 2010. Taha, H. A., Operations Research, Pearson, 2004. 				
 Reference Books: Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M., Discrete-Event System Simulation, Third Edition, Pearson Education, Inc., 2001. Goel, B. S. and Mittal, S. K., Operations Research, Pragati Prakashan, Meerut, 1999. Ravindran, Phillips and Solberg, Operations Research Principles and Practice, Willey & Sons, 1987. 				
	Course Fian		End	
Module	Contents	Но	urs Exam. Marks	
	Basics of operations research–OR models–applications.		1	
Ι	Linear programming – problem formulation		1 15%	
	Graphical method		1	
	Simplex method		1	

	Big-M method	1	
	Two-phase method	1	
	Duality in linear programming	1	
	Transportation problem – formulation – balanced & unbalanced	1	
	transportation problems	1	
	North west corner rule – least cost method	1	
п	MODI method	Y	15%
11	Assignment problem - formulation - optimal solution	1	13 /0
	Hungarian algorithm	1	
	Variants of assignment problems	1	
	Traveling salesman problem.	1	
	FIRST INTERNAL EXAMINATION		
	Sequencing problem- terminology and notations - assumptions -	1	
	problems with <i>n</i> jobs through two machines	1	
	Problems with <i>n</i> jobs through three machines	1	
	Problems with <i>n</i> jobs through <i>m</i> machines.	1	
III	Network analysis – basic terms – network construction – time	1	15%
	Critical path method (CPM)	1	
	Programme evaluation and review technique (PERT)	1	
	Cost considerations in network analysis – crashing	1	
	Introduction to queuing theory-terminologies- classification of queuing models	1	
	Single server problems	1	
	Multi server problems	1	
IV	Inventory control – variables – deterministic inventory models – purchasing model without shortages	1	15%
	Manufacturing model without shortages	1	
	Purchasing model with shortages	1	
	Manufacturing model with shortages	1	
	SECOND INTERNAL EXAMINATION		
	Decision theory – steps in decision theory approach – decision making conditions	1	
	Decisions under conditions of risk	1	
V	Decisions under uncertainty conditions	1	20%
	Decision tree analysis	1	
	Game theory – games with saddle points	1	
	Games without saddle points $-2 \ge 2$ games	1	

	Graphical method for m x 2 & 2 x n games	1	
VI	Simulation – types of simulation – phases of simulation – applications– advantages and disadvantages	1	
	Design of simulation, models & experiments, model validation	1	
	Generation of random numbers	1	
	Monte Carlo simulation	1	20%
	Queuing simulation model	1	
	Inventory simulation model	1	
	Simulation languages	1	

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course code.	Course Name	L-T-P- Credits	Year of Introduction				
ME374	THEORY OF VIBRATIONS	3-0-0-3	2016				
Prerequisite	Prerequisite: ME304 Dynamics of machinery						
Course Object	ives	L' LI	(<u>1</u>				
To underTo intro	estand the principles of vibration theory. duce techniques for solving vibration problems.	CA					
• To enabl	e development of mathematical model for engineering pro	blems in vib	rations.				
Syllabus	OTATYLINOIT	A					
Introduction to	mechanical vibrations; Analysis of free, forced single	degree of f	reedom systems;				
Damping; Vibr	ation measuring instruments; Multi degree of freedom sys	stems; Eigen	value problems;				
Lagrange's equ	ation; Vibration of continuous systems; Transient vibratio	ons; Introduct	tion to non linear				
and random vit	prations.						
Expected outc	ome						
The students w	ill be able to						
i. formulat	e differential equations of motion of mechanical systems						
ii. determin iii. understa	e the natural frequencies of multi degree of freedom syster nd non linear and random vibrations.	ns					
Text Books:							
1. Graham Ke	lly S, Schaum's outline of Mechanical Vibrations, Scl	naum's Out	lines,1996				
2. Singiresu S	Rao, Mechanical Vibrations, Pearson, 2016						
3. Thomson, W T, Theory of Vibration with Applications., Prentice Hall India, 1981							
References Bo	oks:						
1. Den Hartog	, J P, Mechanical Vibrations, McGrawHill, 1956.		1				
2. Leonard M	leirovitch, Elements of Vibration Analysis, McGraw H	Hill,1975.					
·							

	Course Plan			
Module	[odule Contents		End Sem. Exam	
	ADI ADDILLI KALA	N.A	Marks	
	Introduction to mechanical vibrations- Simple harmonic motion- Natural frequency -Equation of motion Energy method-Rayleigh method	2	2004	
Ι	Free vibration of single degree of freedom (DOF) systems with damping- Viscous damping- Logarithmic decrement. Coulomb damping-Energy dissipated by damping- Structural damping -Equivalent viscous damping.	4	20%	
п	Forced harmonic vibration- Magnification factor-Transmissibility- Vibration isolation-Base excitation-Rotating unbalance- whirling of shafts- Resonance	5	15%	
	FIRST INTERNAL EXAM			
	Two degree of freedom systems-Normal mode vibration-Principal co-			
	ordinates-Coordinate coupling.	3	15%	
111	Beat phenomenon-Undamped vibration absorbers- Vibration dampers.	2		
TX 7	Multi degree of freedom systems- Matrix formulation- Influence coefficients-Flexibility matrix-Stiffness matrix	5	20%	
IV	Eigen Value problem:Eigen value and Eigen vectors-Frequency mode shape -Modal analysis.	4		
	SECOND INTERNAL EXAM	7		
	Lagrange's equation- Solution to problems using Lagrange's equation.	4		
V	Vibration of continous systems-Vibrating strings- Longitudinal vibration of rods—Torsional vibration of rods	6	15%	
VI	Transient vibrations- Impulse excitation- Convolution integral.	4	15%	
V I	Introduction to non linear vibrations and random vibrations	3	1370	
	END SEMESTER EXAM			
	2014			

Time: 3 hrs

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P- Credits	Year of Introduction			
ME376	Maintenance Engineering	3-0-0-3	2016			
	Prerequisite: Nil	17 A T	A & 4			
Course	 Course Objectives: To enable the student to understand the principles, functions and practices of maintenance activities. To develop ability in formulating suitable maintenance strategies to achieve reliable manufacturing system. To introduce the different maintenance categories and failure analysis tools. To equip with essential system diagnosis techniques so as to identify and take appropriate actions on error symptoms and causes of failures. To illustrate the techniques used for maintenance management. To empower with the skills to manage a manufacturing system to achieve continuous. 					
Syllabus: Maintenanc monitoring assured ma maintenanc maintenanc	Syllabus: Maintenance – reliability – maintainability – availability – maintenance systems – condition monitoring – monitoring systems – failure analysis – maintenance effectiveness – quality assured maintenance – maintenance planning and scheduling – maintenance organization – maintenance costs – maintenance budgeting – human factor in maintenance – computer-aided					
Expected o	utcome:	011.				
 Expected outcome: The students will be able to Understand the relationship of key concepts in reliability engineering and application to maintenance strategies in a manufacturing environment. Establish maintenance strategies according to system characteristics and design transition programs to implement these strategies. Manage the manufacturing organization with highest possible availability. 						
 Text Books 1. Gupta A. Delhi, 20 2. Rao S. S 3. Srivastav New Del 4. Venkatar New Del 	S: . K., Reliability, Maintenance and Safety Engi 209. ., Reliability-Based Design, McGraw-Hill, Inc 7a S. K., Maintenance Engineering and Manag hi, 1998. Taman, Maintenance Engineering and Manager hi, 2007.	neering, Univer , New York, 19 ement, S. Chan ment, Prentic-H	rsity Science Press, New 992. Id & Company Ltd., Iall of India Pvt. Ltd.,			

Reference Books:

- 1. Davies, Handbook of Condition Monitoring, Chapman & Hall, 1996.
- 2. Garg M. R., Industrial Maintenance, S. Chand & Co., 1986.
- 3. Higgins L. R., Maintenance Engineering Hand book, McGraw Hill, 5th Edition, 1988.
- **4.** Mishra R. C. and Pathak K., Maintenance Engineering and Management, PHI Learning Pvt. Ltd., New Delhi, 2009.

	Course Plan	M	
Module	Contents	Hours	End Sem. Exam. Marks
	Maintenance – basic concepts, purpose, functions and objectives of maintenance.	1	
	Principles, benefits and effects of maintenance	1	
Ţ	Inter-relationship between productivity, quality, reliability and maintainability – maintenance productivity – quality in maintenance.	1	150/
1	Reliability – basic concepts – bathtub curve – failure rate – mean time before failure.	1	15%
	System reliability – reliability of series and parallel systems.	1	
	Maintainability – mean time to failure – mean time to repair.	1	
	Availability – inherent, achieved and operational availability – reliability, availability and maintainability (RAM).	1	
	Maintenance strategies / systems – types – basis for selection. Breakdown maintenance – corrective maintenance	1	
	Preventive maintenance – process flow – frequency in preventive maintenance.	1	
	Predictive maintenance – components – advantages and disadvantages.	1	
II	Condition based maintenance and condition monitoring – monitoring systems.	1	15%
	Performance monitoring – visual, tactile and aural monitoring – leakage monitoring.	1	
	Temperature monitoring – thermography – advantages.	1	
	Thickness monitoring – acoustic monitoring – smell/odour monitoring.	1	
	FIRST INTERNAL EXAMINATION		
	Vibration monitoring – vibration fundamentals – vibration analysis.	1	
	Vibration transducers – types.	1	
III	Machinery vibration trouble shooting – machinery vibration standard, severity chart and acceptable limits.	1	15%
	Lubricant monitoring – components and techniques – filter debris analysis & filtergrams.	1	
	Ferrography – spectroscopic oil analysis program.	1	1

	Crack monitoring – techniques.	1	
	Corrosion monitoring – techniques.	1	
	Reliability centered maintenance (RCM) – steps – flow diagram	1	
	Defect and failure – definitions – basics of failures – failure		
	generation – failure analysis.	1	
IV	Fault tree analysis (FTA)	1	15%
	Event tree analysis (ETA)	1	
	Root cause analysis (RCA)	1	
	Failure modes and effects analysis (FMEA)	1	
	Failure mode effect criticality analysis (FMECA)	1	
	SECOND INTERNAL EXAMINATION		
	Terotechnology – definitions – terotechnology system –	1	
	terotechnology process – strategies.	1	
	Total productive maintenance (TPM) – features –methodology – basic systems of TPM – TPM and terotechnology.	1	
	Six sigma maintenance.	1	20%
	Lean maintenance – 5-zero maintenance concept –	_	
• •	5-S maintenance concept.	1	
V	Business centered maintenance (BCM) – six pillars – success	1	
	factors.	1	
	Maintenance effectiveness – overall equipment effectiveness –		
	key performance indicators – maintenance performance	1	
	measuring indices.		
	Quality assured maintenance – need – maintenance work	1	
	quality – use of c-chart for quality control in maintenance.	1	
	Maintenance planning and scheduling.	1	
	centralized and decentralized maintenance.	1	
	Maintenance costs – classification of maintenance costs –	1	
	Maintenance budgeting types of maintenance budget	/	
VI	preparation of maintenance budget.	1	200/
VI	Human factor in maintenance – manpower planning for	1	2070
	training for maintenance personnel	1	
	Computer-aided maintenance management system (CMMS) –		
	functions, applications and advantages of CMMS.	1	
	Maintenance integration – various steps in integration – scheme		
	of integration of maintenance function with other functions.	1	

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.